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In recent advancements, the development of smart packaging systems for food has focused 

on utilizing composite materials to enhance functionality and sustainability. In this study, 

the composite film from chitosan and PVA was combined at various concentrations 

(ranging from 0.1% to 0.5%) with the addition of Cu(500mM) and 1% STPP at a 5:1 ratio. 

An additional indicator was included to detect fish spoilage. The synthesized chitosan 

material was then blended with PVA to form a composite film. The film was characterized 

using FTIR, which confirmed the presence of fingerprint vibrations indicating the cross-

linking between TPP, chitosan, and Cu. These bonds were observed at wave numbers 1118 

cm-1, 879 cm-1, and 603 cm-1. SEM analysis revealed that the film had particle sizes 

ranging from 865 nm to 1.49 μm. XRD analysis showed distinctive features of pure chitosan 

and chitosan composite. The composite film K-05 produced an amorphous structure, 

indicating decreased crystallinity due to the addition of STPP and Cu. The water uptake test 

demonstrated that an increased concentration of chitosan in the composite led to higher 

absorption and solubility effects. Conversely, the addition of chitosan in the film decreased 

water vapor permeability as determined by the water vapor permeability test.  The 

antibacterial test conducted on all films (concentration of 0.1% to 0.5%) indicated that the 

films K-01 and K-02 exhibited the best zone of inhibition against Escherichia coli. This 

study successfully synthesized and characterized a smart packaging film composed of 

polyvinyl alcohol (PVA), chitosan, copper (Cu), and bromocresol green (BCG) indicator, 

designed to monitor food freshness through visual pH changes and inhibition of microbial 

growth. 

INTRODUCTION 

The majority of synthetic plastics used today 

are made of petroleum which non-biodegradable. 

Food packaging will eventually be discarded in 

nature and turn into a mountain of trash. This waste 

will accumulate as solid waste in settlements and 

will eventually become an environmental issues 

[1], [2]. 

The most recent advancements in packaging 

technology are currently producing intelligent, 

environmentally friendly packaging. This 

packaging is separated into active packaging and 

smart packaging [3]. The ability of active 

packaging and smart packaging to interact with 

food and the environment is their primary point of 

differentiation. Through signals that are sent when 

physical or chemical changes occur in packaged 

food ingredients, smart packaging is utilized to 

monitor product quality [4]. While active 

packaging can be used to lengthen the shelf life of 

foodstuffs, this packaging not only serves to wrap 

food but also enhances food quality due to its 

antibacterial qualities. 

Numerous investigations on antibacterial 

plastics have been conducted using nanoscale metal 

oxides and synthetic antimicrobial agents. The use 

of natural antibacterials has, however, become the 

focus of research as a result of the green industry 

[5]. Natural antibacterials are favored in their 

applications due to their characteristics like being 

non-toxic, environmentally friendly, and 

compatible [6]. Chitosan is a common substance 

used in food packaging because it is simple to 

modify, has strong barrier qualities, and can form 

films. Additionally, it has been demonstrated that 

this polymer can prevent both gram-positive and 

gram-negative bacteria from growing [7] also by 

adding filler like ZnO and CuO nanoparticles [8], 

[9], [10]. Antibacterial properties also can be 

improved by adding binahong extract. The optimal 

bacterial inhibition observed in the chitosan-PVA 

plastic was achieved by incorporating 100% 

binahong extract, resulting in a 12 mm inhibition 

zone [11]. 
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Modification of chitosan films can be carried 

out by adding plasticizers [12], [13], [14]; fillers 

[15], and cross-linking agents [16], [17] . To boost 

the polymer's mobility and flexibility, the 

plasticizer will aid in reducing the intermolecular 

pressures acting on it [18]. The cross-linking agent 

will make pure chitosan more resistant to air and 

improve its mechanical properties. The 

incorporation of cross linkers and plasticizers will 

also affect other properties of the base polymer. 

Using active packaging can increase the 

lifespan of food because it protects from 

microorganisms and moisture and prevents 

oxidation [19], [20], [21]. The natural materials 

used to make these films must fulfill the standards 

for food packaging, which are thermally stable, 

antioxidant, antimicrobial, biocompatible, easy to 

produce, and abundant in material. Besides 

incorporating cross-linking agents to enhance the 

mechanical, hydrophobic, and antibacterial 

properties of chitosan plastic, active substances like 

plant extracts can also be added [22], [23], [24].  

The presence of hydroxyl and amino groups in the 

chitosan framework makes it have high 

hydrophilicity [25], [26]. On the other hand, this 

affects the polymer's poor mechanical strength. 

Several research was conducted, including through 

grafting, composites, and blending, to address these 

limitations [27], [28], [29]. PVA is one of the 

suitable polymers that can be blended with 

chitosan. Chemical characteristics and production 

costs may both improve when PVA and chitosan 

are combined [30], [31], [32]. To increase the 

thermal and mechanical stability of chitosan, one of 

the polymers used as a blending component is 

polyvinyl alcohol (PVA). The properties of PVA 

which are flexible and have better mechanical 

strength than chitosan, are hydrophilic [33], non-

toxic, and thermally stable [37], [38]  are the main 

reasons why PVA was chosen to be used as a 

blending material [39], [40]. 

Numerous researchers have shown interest 

in the combination of synthetic and natural 

polymers, which will result in new material 

characteristics. Even though its biocompatibility is 

good, it is expensive to produce and has poor 

mechanical resistance [41]. Therefore, 

optimization of the ratio between the two polymers 

must be developed. The interaction of the two 

polymers is expected to be able to form good 

intermolecular bonds thereby increasing the 

mechanical resistance of the polymer. The 

interaction between the two polymers is very good 

at covering their respective deficiencies. The PVA 

film is thicker than the pure chitosan film because 

of its higher surface density. When PVA and 

chitosan are combined, the mechanical resistance, 

which had already improved, can be further 

improved which increased with the content of 

chitosan due to the broad hydration layers of the 

charged chitosan chains [42]. 

According to several recent studies on 

plastic film packaging, the most prevalent type of 

research focuses on using chitosan as a primary 

component of packaging film.  The findings 

indicate that the blend of chitosan, zinc oxide, and 

PVA has significant potential to inhibit S. aureus 

colony growth. This effectiveness is attributed to 

the enhanced dispersion of components provided 

by PVA, and the improved mutual activity between 

the metal oxide and natural polymer facilitated by 

the chitosan-ZnO chelate [43]. Previous study  

found that chitosan combined with PVA for food 

packaging films showed good miscibility, thermal 

stability, amorphous nature, and promising 

mechanical characteristics for packaging 

applications [44], [45]. Contrary to that, some 

researchers found that these combinations have 

limitations on  mechanical properties and achieving 

optimal  water vapor barrier properties [46], [47]. 

Based on the previous research, it can be 

concluded that the highest hydrogel density and 

tensile strength were obtained in hydrogels with a 

crosslinking agent concentration of 1.5% for 

chitosan:PVA ratio of 1:3, although this 

configuration also resulted in the lowest degree of 

swelling. Conversely, the lowest hydrogel density 

and tensile strength were observed with a 

crosslinking agent concentration of 0.5% for 

chitosan:PVA ratio of 3:1 [48].  When the amount 

of PVA is decreased, the degree of both intra- and 

intermolecular hydrogen bonding is reduced due to 

the anionic nature of the hydroxyl group. This 

reduction impacts the polymer’s structural integrity 

and flexibility [25]. A composite film with 0.025% 

zeolite-Ag content exhibits a tensile strength value 

of 46.534 MPa by combining 40% (v/v) PVA and 

60% (v/v) chitosan [49]. In addition the 

mechanical, thermal, morphological, and 

sensitivity properties of chitosan/PVA to pH with 

the addition of glutaraldehid as a crosslinking agent 

[50]. The results of his research show that water 

uptake and thermal resistance decrease with 

decreasing PVA concentration. The presence of 

hydroxyl groups allows PVA to bond chemically 

with the amine groups in chitosan. 

The incorporation of smaller inorganic 

particles into larger polymers is desirable to 

combine the parameters of the two materials and 

improve the physicochemical properties of the 
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polymers. The water vapor barrier properties of 

biopolymer films are highly dependent on the 

plasticizer and moisture content [51], [52], [53]. 

Nanoparticles (Cu nps colloids) in solution form 

chitosan films and the film performance of these 

composites depends on their barrier properties. 

Cardenas found that the incorporation of colloidal 

Cu nanoparticles in the chitosan matrix improved 

the film barrier properties, decreased oxygen 

permeability as well as water vapor permeability, 

and increased protection against UV rays [54], 

[55]. 

Based on the reasons above, the 

development of this research direction is in the 

manufacture of intelligent plastics that provide an 

antibacterial effect while being able to provide 

information to consumers about product conditions 

through changes in the color of the plastic. 

EXPERIMENT 

Material 

CuSO4, NaOH, bromocresol green (BCG), 

acetic acid  p.a,  (merck), Sodium Tripolyphosphate 

(STPP), Polyvinyl Alcohol, NA medium, E.Coli. 

Instrumentation 

The equipment used in this study included 

beaker glass, analytical balance, hot plate, stirring 

rod, a hot plate,  funnel, paper filters, cylinder glass, 

volumetric pipettes, spatulas, aluminum foil, petri 

dish,  incubator, autoclave desiccator, freeze dryer, 

SEM, and FTIR.  

Procedure 

Preparation of Chitosan-Cu-TPP Composite 

Chitosan as much as 0.1 -0.5 g each was 

dissolved in 100 mL of 2% acetic acid and then 

filtered to remove impurities. The chitosan solution 

was homogenized using a magnetic stirrer for 10 

minutes and added with a ratio of nano chitosan and 

1% Sodium Tripolyphosphate (STPP) with a ratio 

of 5:1 (v/v) then continued homogenization for 1 

hour at a temperature of 50°C and a speed of 400 

rpm. In the next step, a mixture of 1 M NaOH and 

CuSO4 (500 mM) with a ratio of 1:10 (v/v) was 

added to the chitosan-STPP and BCG solution as 

much as 1:1000 of the nano chitosan-STPP 

mixture, then homogenized for 1 hour (temperature 

50° C and a speed of 400 rpm). Wait for the 

solution to cool before adjusting the pH to a range 

of 8 to 10 to promote the creation of nanoparticles. 

The pH is then neutralized once more by repeated 

washings using distilled water until a pH of 6 to 7. 

The particles are centrifuged at 10,000 rpm for 20 

minutes. To create nano chitosan-Cu powder, the 

precipitate was dried in a freeze dryer at 3-5°C  

Blending Chitosan-Cu-TPP/PVA 

Preparation of a homogeneous solution of 

chitosan-TPP/PVA by dissolving of Chitosan-Cu-

TPP composite with PVA (1:1) by stirring using a 

magnetic stirrer with a stirring speed of 300 rpm 

and heated at 80oC for 30 minutes. 

Characterization 

FTIR of chitosan-Cu-TPP and morphology of the 

chitosan-Cu-TPP/PVA film 

 
FT-IR spectra from an FT-IR 

spectrophotometer were used to study the chemical 

composition of the films and any potential 

interactions. SEM was used for the morphological 

study to examine the morphology of the film. 

Water absorption 

Control films and nanochitosan-Cu-BCG 

films were stored for 3 days under atmospheric 

conditions. The provided film (20 × 10 mm2) was 

immersed in a closed chamber containing 20 mL of 

distilled water (100% RH). Films were removed 

from distilled water at set time intervals and 

weighed. An analytical balance with a precision of 

0.1 mg is used for weighting. Moisture absorption 

is calculated by the following formula: 

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑢𝑝𝑡𝑎𝑘𝑒 =
𝑊𝑡−𝑊𝑖

𝑊𝑖
𝑥100%                  (1)                  

where, wt is the weight (mg) of film at a certain 

time and wi is the initial weight (mg). 

Solubility in water  

Solubility films are defined as the percent of 

film that is dissolved in water after submerging in 

water for 24 hours. Films were placed in at 

desiccator containing silica for 24 hours, and the 

initial weight of films was weighted (Wi ), then the 

film was submerged in 20 mL distilled water for 24 

h in atmospheric conditions. Finally, the films were 

taken out of the distilled water and transferred to 

the desiccator containing calcium sulfate for 24 

hours again. The dried films were weighed again, 

and final weight was calculated (Wf), and the 

solubility percent was calculated as the following:  
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𝑆𝑃 (%) =
𝑊𝑖 − 𝑊𝑓

𝑊𝑓
𝑥100%                             (2) 

where, wf is the final weight (mg) of film at a  

certain time and wi is the initial weight (mg). 

Observation of the Characteristics of Intelligent 

Packaging 

Testing the level of fish spoilage was carried 

out at 30°C for 15 hours of observation. 

Antibacterial Test With Disc Method 

Antibacterial test was performed using 

coliform bacteria E. coli. Films 1x1 cm at variation 

of concentrations (0.1%-0.5%) were placed into 

NA medium containing e coli bacteria. The petri 

disk was then incubated for 1 day at 37°C. 

RESULT AND DISCUSSION 

This study's emphasis on optimizing 

nanoparticle fabrication is based on Calvo et al.'s 

(1997) methodology. To begin, chitosan containing 

0.1, 0.2, 0.3, 0.4, and 0.5 grams is dissolved in a 

solution of 2% acetic. It is because of chitosan's 

excellent solubility in acidic solutions. The 

concentration of 2% acetic acid was identified as 

the most conducive for effecting chitosan 

dissolution [56].  Next, TPP 1% solution was added 

dropwise with the ratio of chitosan to TPP solution 

is 5:1. TPP is the crosslinker agent. A meticulous 

evaluation substantiated that 1% of TPP is the 

optimal efficacy concentration for producing 

produce nano-sized particles. In the fabrication of 

antibacterial plastic, a mixture of CuSO4 and NaOH 

was added to the solution and homogenized for 1 

hour. In this phase, the resulting film was 

thoroughly washed with distilled water until 

reaching a neutral pH level followed by 1% of BCG 

as an indicator. The mixture is centrifuged after 

washing to obtain a homogeneous, nano-sized 

solution. The resulting precipitate is then put 

through freeze-drying processes, which results in 

the development of a desiccated powder. 

The TPP-chitosan complex was prepared by 

dropping chitosan droplets into the TPP solution 

which is called the ionic gelation method. Chitosan 

is first dissolved in weak acid, allowing the amine 

groups to undergo protonation to produce 

polycations. To ensure that the polycations and 

polyanions of TPP could interact completely, TPP 

was gradually introduced to the chitosan solution. 

There are two different crosslinking process 

schemes: chemical cross-linking and physical 

cross-linking. Because STPP is a non-toxic 

crosslinking agent, chemical crosslinking in this 

work was feasible. The negative charge on the 

phosphate anion in TPP and the amine cations in 

chitosan interacted electrostatically to produce 

nanoparticles [57], [58]. Due to the complexing of 

differing charges between chitosan and TPP, 

chitosan will undergo ionic gelation. When stirred, 

this ionic gelation can take place at room 

temperature.  

Chitosan is dissolved in a weak acid solution 

to produce chitosan cations in the ionic gelation 

process. After that, while stirring, the solution is 

introduced by slowly dripping into the TPP 

polyanionic solution. Chitosan goes through ionic 

gelation and precipitation to create spherical 

particles as a result of complexation between 

various charges. Thus, mechanical production at 

room temperature resulted in the spontaneous 

formation of nanoparticles. 

Based on the findings from Reddy the 

presence of TPP as a crosslinking agent and CTAB 

as a surfactant was responsible for the synthesis of 

chitosan nanoparticles measuring 320.8 nm [39] . 

Due to the presence of water, TPP will ionize and 

produce OH and P3O10
-5 ions. The amine groups in 

chitosan will interact electrostatically with the 

negative charge on P3O10
-5, leading to the formation 

of the intermolecular networks of chitosan 

polymers via ionic bridges, as can be seen in 

Figure 1 [58],  [59]. 

 

Figure 1. Cross-linking between chitosan and sodium 

tripolyphosphate. 

Chitosan can dissolve well at a weak acid pH 

which then protonates to form cationic polyamines 

(-NH3
+). TPP that undergoes dissociation produces 

3 negative charges originating from phosphates so 

that it can be said to be a polyanion. This chitosan 

cation will interact very well with the TPP 

polyanion. It should be noted that the ratio of the 

addition of TPP in the solution must be appropriate 

[60] [61], because the excess addition will make the 
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particle size enlarge. Therefore, it would be very 

good if added with surfactants so that 

agglomeration can be prevented like tween-80 [62], 

[63]. The size and surface charge of the particles 

can be modified by varying the ratio of chitosan to 

stabilizer. 

Although TPP can bind to most of the amine 

groups in chitosan, not all of the chitosan charges 

bind to it during the formation resulting in the 

charge density of the polymer is being positively 

charged which is a characteristic of chitosan 

nanoparticles:TPP  [64], [65]. 

According to Vera, PVA is a polymer that is 

hydrophilic, non-toxic, and elastic. This 

characteristic enables compatibility with chitosan 

while blended [66]. PVA /chitosan films were 

produced using the solvent casting technique. 

Chitosan films have a lower degree of flexibility 

than pure PVA films [44]. The hydrophilic PVA 

that is added to the chitosan polymer is meant to 

make the film mechanically strong[66]. 

Membrane printing was conducted at the 

glass transition temperature of PVA, which is 

80°C. As indicated by certain references, the 

linkage established between PVA and chitosan is 

attributed to hydrogen bonding. This interaction 

through hydrogen bonds contributes to enhancing 

the film's strength. The membrane's structure 

becomes more compact when PVA occupies the 

hydrogel cavity, resulting in what is known as an 

interpenetrating network (IPN). The blending of 

PVA and chitosan involves both the physical 

arrangement of polymer chains and chemical bond 

formation, leading to heightened mechanical 

properties of the polymer. This interaction imparts 

increased strength and linearly escalates the 

polymer's thickness with the addition of PVA. 

The blending of chitosan and PVA is 

initiated once the chitosan solution reaches 

homogeneity. The incorporation of PVA solution is 

typically at a concentration of approximately 3%. 

The blending process of chitosan and PVA at 

specific proportions enhances the film's 

architecture, rendering it denser [67]. This 

structural enhancement contributes to fortifying the 

membrane's strength and its ability to stabilize the 

resulting membrane structure [68]. Moreover, the 

introduction of PVA leads to an increase in the 

film's thickness [69]. 

FTIR 

FT-IR spectroscopic analysis was conducted 

to explore the molecular-level interaction within 

chitosan/TPP/Cu films. The FT-IR spectrum was 

acquired for both pure chitosan powder and the 

chitosan/TPP/Cu composite. In the case of pure 

chitosan, as reported by Kumar, the absorption 

peak at 1250 cm-1 signifies the presence of amino 

groups. The principal saccharide-related groups are 

represented by bands at 890, 1020, and 1150 cm-1, 

while the strain in amino groups is indicated by the 

3340 cm-1 band (OH), and the amide I and amide II 

bands are seen at 1660 cm-1 and 1560 cm-1, 

respectively  

 

Figure 2. FTIR spectra on chitosan and K-01 (0.1% chitosan/TPP/Cu). 
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Based on the results of this study, the broad 

absorption band shown at 3300 to 3500 cm−1 

corresponds to the O―H stretching for all spectra. 

In the case of pure chitosan powder, the absorption 

peak observed at 3556 cm-1 corresponds to the 

combined strain of NH2 and OH groups.

  
Table 1. Characteristics absorption bands ( cm-1) in infrared spectra 

Functional Group Chitosan (cm-1) 
Chitosan/Cu/TPP (k-01) (cm-1) 

powder 
Chitosan  

-OH and –NH2 axial stretch 

-C-H- axial stretch 

Copling C-N axial stretch 

Copling C-O axial stretch 

Amino group  

N-H angular deformation 

 

 

Hydroxyl group (OH) in polymer and 

secondary amine (NH)  

Strain (Cu-N) 

Amide strain with Cu 

P-O (stretch) 

Saccharide 

3556 

2924-2854 

1327 

1419 

1265 

1611 

 

 

1161 

 

 

- 

- 

894, 1161 

3396 

2914-2877 

1321 

1415 

 

1625 

 

 

1118 

 

430 

603 

879 

- 

3377 3302 [70] [71]  

2911 [72] 

1324 [72] 

1406 [72] 

1250 [72] 

1660 dan 1560 (amida I 

dan II)  [72] 

 

 

 

442 [73] 

- 

- 

890,1150,10201 [71] 

However, when chitosan is doped with 

STPP-CuSO4, the broader and prominent mainly 

shifted to a lower wavenumber at 3396 cm-1. This 

shift signifies a robust interaction between these 

groups and CuSO4 and STPP. The absorption bands 

at 2925, 2914, 2877, and 2882 cm-1 are linked to 

the asymmetric stretching of CH3 and CH2 in the 

chitosan polymer. Additionally, the absorption 

peaks detected at 1611 and 1625 cm-1 are likely 

related to the bending vibrations of the –NH2 

groups. 

In comparison to the chitosan spectrum, new 

absorption peaks emerge at 879 cm-1 and 603 cm-1, 

attributed to the presence of the amide group and 

the strain mode of Cu, respectively. Another 

intriguing observation is the shift of the 

characteristic peak in Figure 2 to a lower 

wavenumber. Specifically, the peak width at 3556 

cm-1, corresponding to the stretching vibration of 

hydroxyl, amino, and amide groups, undergoes a 

significant shift to 3396 cm-1. This shift is not only 

accompanied by increased breadth but also 

heightened intensity, indicating a potent interaction 

between these groups and Cu and STPP.  

There is some change in the absorption band 

after the addition of TPP and Cu. The presence of 

phosphate compounds is signaled by absorption at 

wavenumbers 786 and 732 cm-1, indicative of PO 

stretching. On the other hand, some peaks that were 

present in the TPP/Cu composite chitosan are 

absent, specifically those at 955, 850, and 810 cm-

1. These changes are postulated to stem from the 

cross-linking interaction between the ionic charge 

of TPP and the positively charged amino acid 

segment of chitosan (R-NH3
+). The cross-linking 

reaction between the amino group and 

tripolyphosphate (TPP) is supported by the reaction 

mechanism shown in Figure 3. 

 

 

Figure 3. Cross-linking ionic chitosan and 

tripolyphosphate [74]. 

XRD Test 

The X-ray diffraction (XRD) analyses of 

both chitosan and chitosan-tripolyphosphate at 

various concentrations of chitosan (0.1-0.5% ) are 

depicted in Figure 4. In the X-ray diffraction 

patterns of the initial chitosan samples, a 

characteristic peak appeared at 2θ of 19.97°, 

indicating the presence of a linear crystalline 

structure within the sample. In the case of the 
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chitosan-TPP diffraction pattern, the peak at 2θ of 

12.96° shifted to 20.42° for chitosan-TPP with 

chitosan concentrations ranging from 0.1 to 0.5. 

This peak shift across the five chitosan/TPP/Cu 

samples suggests a modification in the crystal 

structure. Consequently, it becomes evident that a 

transition from a crystalline structure to an 

amorphous one occurred in chitosan due to the 

formation of cross-links between TPP and chitosan. 

Figure 4.  Illustration of the X-ray diffraction patterns in chitosan/TPP/Cu ; a) 0.1%,  b) 0.2% , c) 0.3%, d) 0.4%, and, 

e) 0.5% .

SEM 

Figure 5 depicts the morphology of the 

chitosan/Cu/TPP composite powder. The observed 

particle sizes range from 865 nm to 1.49 μm. In 

general, the resulting chitosan/Cu/TPP powder 

composites exhibit a micrometer scale rather than a 

nano size. The surface structure obtained resembles 

that of a tube, similar to findings in previous 

research [75]. The SEM results reveal that the 

quantity of chitosan used for composite formation 

influences the particle size. Greater amounts of 

chitosan lead to larger particle sizes in the produced 

chitosan/Cu/BCG composite powder due to 

agglomeration. Notably, a comparison between 

chitosan K-0.1 and K-0.5 films shows distinct 

differences; K-0.1 displays lump-like structures, 

unlike K-0.5. 

The incorporation of chitosan into the 

TPP/Cu composite contributes to an increased 

surface area of the composite. This is evident in the 

films where, upon blending with PVA, an 

inhomogeneous structure emerges. As seen in 
Figure 6, the shape of the composite film surface 

in K-05 is tubular, while in K-01 it is granular. This 

means that the ratio of chitosan addition in the 

composite affects the shape of the film surface. 

Additionally, the appearance of films from K-0.3 to 

K-0.5 tends to be green due to BCG addition, 

signifying an acidic tendency. This color shift is 

attributed to heightened protonation in chitosan. 

The combination of chitosan composite and PVA 

restricts the free volume of the matrix due to 

chitosan addition. 

 

Figure 5. Composite when dissolved in distilled water 

(from left to right K-0.1 to K.05). 
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However, the film's stiffness is 

predominantly determined by its hygroscopic 

characteristics. Notably, K-0.1 chitosan/PVA films 

exhibit greater stiffness due to the smaller 

composite particle size, which compresses the 

film's microstructure. The surface displays 

roughness and a prevalent crystal structure, 

indicating a highly polycrystalline nature. 

 
(a) 

 
(b) 

Figure 6. Structure of powder chitosan/Cu/TPP (a)K-05 

(b)K-01 at 1300x and 3000x magnification. 

Absorptivity and Solubility Test 

Regarding the utilization of the 

chitosan/TPP/Cu/PVA. nano chitosan composite 

film as a smart indicator, the film's physical 

attributes necessitate testing. Fig. 7 offers insights 

into various chitosan variations (from K-01 to K-

05) concerning their water solubility and 

absorption characteristics. 

The findings reveal that the incorporation of 

chitosan, which exhibits a notable affinity for water 

molecules in the chitosan/TPP/Cu/PVA film, 

impacts the film’s water absorption and solubility. 

Water vapor transmission is influenced by 

diffusivity and solubility in water. Notably, among 

the five chitosan film variations, (K-05) shows the 

highest solubility and water absorption. The higher 

chitosan content in this film prompts a lack of 

compactness among film constituents. During the 

blending process with PVA, chitosan tends to 

solvate with water molecules in PVA solution, 

leading to the substantial particle size of K-05. To 

prevent water diffusion, chitosan with a smaller 

particle size is desirable because this 

chitosan/Cu/TPP powder will fill the lattice on the 

PVA film when blended. Achieving a more 

uniform and denser blending between molecules 

curtails the diffusion of water vapor across the film. 

The influence of chitosan/TPP/Cu/PVA composite 

powder variations on humidity and water solubility 

is shown in Figure 7 below which shows this water 

uptake is quite similar to the research of  [76]. 

 

 
(a) 

 

(b) 

Figure 7.  Effect of chitosan composition on 

chitosan/TPP/Cu/PVA film on (a) water solubility and 

(b) moisture absorption. 

 
The water and moisture uptake showed in 

Figure 7 are alighn with the previous result from 

Priyadharsih as presented in Tabel 2. 



al Kimiya: Jurnal Ilmu Kimia dan Terapan, 

p-ISSN: 2407-1897, e-ISSN: 2407-1927 

Vol. 11, No. 1 (12-28), June 2024/Djulhijah 1445 

20 

Tabel 2. Physicochemical Properties of film CS/CS/CSG. 

Film Type 
Physicochemical Properties 

Moisture Content (%) Water Absorption (%) Solubility (%) Opacity (A600 /mm) 

CS 22.14 ±0.99 495.24±11.34 23.91±1.38 1.716±0.002 

CSCG 15.70±0.97 63.20±2.48 34.42±1.49 0.320±0.002 

      Source :  [76] 

Biodegradable films tend to dissolve in 

water, which is a pivotal property of intelligent 

food packaging. Increasing chitosan concentration 

from 0.1% to 0.5% in the packaging process leads 

to a bigger particle size of the chitosan/Cu/TPP 

composite powder. The amount of chitosan 

concentration significantly influences its water 

absorption. This increase engenders a more fragile 

intra-polymer/film network. Simultaneously, the 

hydrophilic side of chitosan's active group easily 

combines with water molecules which impact on 

disrupting the hydrogen bond and also diminishing 

the cohesiveness of the chitosan matrix. 

In terms of packaging durability, the 

insolubility of the film in water is desirable, but 

some film applications want the opposite 

characteristic, like in food encapsulation 

applications. Chitosan's hydrophilicity properties 

impact permeability, thickness, and stability. 

Aligning to Miya as noted in Ayuni, the 

hydrophilic attributes of PVA film rise with 

chitosan addition. The amalgamation of PVA and 

chitosan enhances the film’s mechanical properties 

through the formation of hydrogen bonds between 

the two components [77], [78]. 

The decline in water vapor permeability of 

the chitosan/Cu/TPP/PVA film, coupled with 

varied chitosan concentrations, may be influenced 

by three factors: (1) hydrogen bonding interaction 

between chitosan and solvation, limiting chitosan 

hydroxyl group availability for water bonding; (2) 

heightened roughness contributing to diffusion 

path tortuosity, consequently affecting 

permeability. The presence of 0.1% Cu content in 

the chitosan/Cu/TPP/PVA film elevates the 

chitosan film's thickness, thus contributing to the 

second factor. 

The increased degree of swelling due to the 

addition of chitosan could be due to the density of 

the PVA molecules that fill the hydrogel cavities. 

The addition of chitosan will increase the number 

of crosslinks in the film so that water will find it 

difficult to diffuse in the hydrogel. The swelling 

mechanism becomes more effective in an acidic 

environment in comparison to an alkaline one [79]. 

This is because it will trigger protonation of the 

amine groups of chitosan. Protonation will cause an 

increase in electrostatic repulsion. Subsequently, 

hydrogen bonds within the film fracture, rendering 

the hydrogel structure more porous and facilitating 

diffusion. 

The hydrophilic equilibrium of the system 

causes the hydrogel film to move into the polymer 

network, resulting in changes in the dimensions of 

the swollen film. Figure 7 illustrates the swelling 

behavior of films with various chitosan content 

ranging from 0.1% to 0.5%. The results indicate 

that the increase of chitosan aligns with the water 

uptake. This phenomenon leads to the crosslinking 

between STPP as a cross-linking agent also the 

contribution of the blending PVA/chitosan. Based 

on the quantity of chitosan that is contained in the 

film, hydrophilic film is increasing and is 

associated with higher air permeability 

temperatures. An increase in crosslinkers leads to a 

decrease in swelling degree. The intra-polymer 

chain reactions stiffen the network, reducing 

flexibility and limiting the rate of swelling of 

hydrophilic hydrogel groups. This finding aligns 

with the hydrogel mechanism. 

Chemical cross-linking between PVA or 

chitosan chains occurs at the microstructure scale. 

Although this study differs from others on chitosan, 

similar trends in the swelling behavior of PVA and 

chitosan support the findings. PVA can swell up to 

400%, while chitosan can swell by about 200%, 

influenced by factors such as the solution medium, 

pH, and temperature [3]. 

Antibacterial Test 

This study uses E. coli bacteria as a 

representation of bacteria that contaminate food. 

The antibacterial test was carried out by dissolving 

the chitosan composite nanoparticles in various 

concentrations of chitosan (0.1, 0.2, 0.3, 0.4, and 

0.5) with 5% PVA in distilled water with a ratio of 

1:2. Chitosan composite powder was tested in 

several pH ranges from 1 to 9, and the color appears 

as shown in Figure 8. 

 
Figure 8. Color change of chitosan/TPP/Cu/BCG 

powder composite at various pH (a) 1-4 (b) 5-9.
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          (a)                                           (b)                                      (c)                                    

                   

                                      (d)                                     (e)                                  (f) 

Figure 9. Antibacterial inhibition zone of PVA-chitosan/TPP/Cu/BCG composite film with e coli bacteria (a) Pure PVA 

(b) K01 (c) K-02 (d) K-03 (e) K-04 (f ) K-05.

To see the antibacterial activity of the 

resulting composite film, the inhibition can be 

seen in Figure 9. It shows the diameter of the clear 

zone in E. coli after administration of 

chitosan/Cu/BCG chitosan composite 

nanoparticles on NA medium. The antibacterial 

activity of the produced chitosan composite films 

can be observed in Figure 8. The image shows the 

clear zone diameter of E. coli after the application 

of chitosan/TPP/PVA film on NA medium. The 

results indicate that the higher the concentration of 

chitosan in chitosan/TPP/PVA film, the smaller 

the clear zone where E. coli does not grow. This is 

because chitosan is an organic compound that can 

be digested by bacteria. The antibacterial ability of 

the nanoparticles at different chitosan 

concentrations varies because the particle size 

increases with higher chitosan concentration, 

resulting in higher water solubility and increased 

aggregation, leading to lower antibacterial 

activity. 

Numerous previous researchers have 

attributed the antimicrobial properties of chitosan 

(Ch) to the positively charged amino groups, 

which interact with negatively charged proteins in 

microbial cells, leading to the leakage of 

intracellular constituents [80], [81], [82], [83], 

[84]. Additionally, PVA itself does not inherently 

possess antibacterial properties solely due to its 

resistance to oxygen. Instead, PVA’s antibacterial 

activity is often enhanced through modifications 

or by combining it with other substances [85]. 

Supported this explanation some researchers 

found a decrease in the number of aerobic bacteria 

in the control sample [86], [87]. 

According to Coma as cited in R.Goy (2009), 

chitosan's antimicrobial activity involves three 

different mechanisms. Firstly, there is an interaction 

between the positive charge of chitosan molecules 

and the negative charge on the microbial cell 

membrane. This electrostatic interaction between 

the protonated NH3
+ groups and the negative 

residues competes with Ca2+ on the electronegative 

side of the cell membrane, leading to changes in 

membrane permeability and triggering an internal 

osmotic pressure imbalance that inhibits microbial 

growth. Additionally, the electrostatic interaction 

causes peptidoglycan hydrolysis in the microbial 

cell wall, resulting in the release of intracellular 

electrolytes such as potassium ions, proteins, and 

nucleic acids. Secondly, chitosan in nanoparticle 

form can penetrate bacterial cell walls, bind to 

DNA, and inhibit mRNA synthesis and DNA 

transcription [88]. 

The third mechanism involves the chelation 

of metals, which can suppress spore elements and 

bind essential nutrients for microbial growth. 

Chitosan's ability to bind metals is due to the 

presence of amino groups in chitosan, which can 

chelate metal cations. This leads to chitosan 

molecules surrounding the metal complexes in 

bacteria, blocking some nutrient flow, and 

ultimately causing microbial cell death [89], [90]. 

Similar studies from Liu, the films exhibited 

significant antimicrobial activity, with higher 

inhibition zones observed for films containing Cu 
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compared to the control film. This antimicrobial 

effect can be attributed also because it  releases 

Cu2+ ions from the nanoparticles, which have 

antimicrobial properties [46]. 

The visual appearance of the intelligent 

packaging sensor comprising 

chitosan/TPP/Cu/PVA with BCG as an indicator, 

along with the color alteration pattern of the sensor 

during the 15-hour observation of fish decay, 

reveals a transformation in the smart packaging 

color from blue to brown as seen in Figure 10. The 

working principle of smart packaging with 

additional BCG as an indicator on fishery products 

as an acid-base indicator changes color due to 

changes in pH. For fishery products, during fish 

spoils, microbial activity leads to the breakdown 

of proteins then produces volatile amine 

compounds such as trimethylamine (TMA), 

ammonia (NH3), and dimethylamine (DMA). 

These volatile basic components interact with the 

indicators on the packaging and change the color 

of the indicator to brown.  Simply, fresh fish sign 

with the acidic condition (the plastics are still blue) 

when the environment turns to a basic 

environment due to the presence of volatile amine 

the color will change. These findings align with 

prior research employing the Bromocresol Green 

(BCG) sensor [91], [92]. In their study, cellulose-

acetate-based packaging films exhibited an 

absorbance shift from 438 nm (acidic form) to 615 

nm (alkaline form) when placed in an alkaline 

environment. 

 

 

Figure 10.  Illustrates the visualization of color change 

in the smart packaging sensor with Chitosan/Cu/ PVA 

as the base material and the BCG indicator. 

The underlying mechanism is believed to 

stem from the interaction between the carboxyl 

and amine groups within chitosan and the volatile 

bases generated during fish decay. Each volatile 

base adheres to the surface functional groups on 

the film, leading to the color change in the BCG 

sensor [93]. Specifically, the negatively charged 

chitosan interacts with volatile bases, while the 

positively charged amine binds to the negatively 

charged OH group in BCG. The accumulation of 

volatile base compounds binding to chitosan 

triggers deprotonation (transition to an alkaline 

state) in BCG, resulting in the color shift of the film 

from blue to brown. 

CONCLUSION 

The synthesis of chitosan composites has 

been successfully carried out by mixing TPP, Cu, 

and BCG as candidates for smart sensors and anti-

bacterial packaging. The FTIR analysis further 

confirms the existence of numerous functional 

groups such as amides, amine bonds, and cross-links 

with TPP in addition to Cu-chitosan composites. 

Their utility in sensor applications largely stems 

from the reactivity of these functional groups 

towards specific analytes. The amides and amines 

content in the composite can better sense 

environmental perturbation like pH or certain ions 

presence making it capable of working as an 

efficient smart sensor and also align as anti 

microbial activity leading to inhibits microbial 

growth. BCG, occurring a pH sensitive dye leads to 

discernible color change in response of variation in 

read out which adds on sensor ability. This result 

will be ideal for sensing and long-term monitoring 

of food freshness. Based on the XRD test K-05 has 

an amorphous structure while the addition of TPP 

and Cu composites decreases the crystallinity.  

Decreasing crystallinity are crucial packaging 

activity. The most recommended film composites 

for optimization are K-01 and K-02 because in this 

composition the e-coli bacteria have the widest 

clean zone that is not overgrown with bacteria. 
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