Analysis of the Molecular Structure of Lipase-Dependent Chaperone from Ralstonia pickettii Strain BK6

Muhamad Azwar Syah, Sri Ambardini, Jamili Jamili, Muzuni Muzuni, Darul Trisandy

Abstract


Several biotechnology industries are exploring the characteristics of lipase-dependent chaperones due to their distinctive biochemical traits. This study aimed to employ bioinformatics to analyze the molecular structure of Ralstonia picketii BK6's lipase-dependent chaperon (LipRM). The sequence mapping and amino acid distribution were examined using BioEdit (version 7.0.9.1). SignalP 5.0 and Interpro are employed for signal peptide detection, whereas Swiss-Model and VMD 1.9.2 are used for molecular dynamics modelling. The results showed that the Shine-Dalgarno sequence was discovered in the LipRM promoter, seven nucleotides upstream of the initiation codon (AUG) with the 5'-AGGAGA-3', and has a terminator region that facilitates the formation of a secondary structure. The protein's 3D structure prediction results indicate differences in the alpha helix chains (residues 166-174 and 254-271) between LipRM and the reference lipase. LipRM's molecular structure comprises a detachable signal peptide, and with variations in helix alpha chain conformation and ligand geometry.


Keywords


bioinformatics, lipase-dependent chaperone, modelling

Full Text:

PDF

References


Almeida, F. L. C., Travalia, B. M., Goncalves, I. S., & Forte, M. B. S. (2021). Biodiesel Production by Lipase‐Catalyzed Reactions: Bibliometric Analysis and Study of Trends. Biofuels, Bioproducts and Biorefining 15(4) : 1141–1159. DOI: 10.1002/bbb.2183.

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., & Bordoli, L. (2014). SWISS-MODEL: Modelling Protein Tertiary and Quaternary Structure using Evolutionary Information. Nucleic Acids Research 42(1) : 252–258. DOI: 10.1093/nar/gku340.

Chen, L., Kulasiri, D., & Samarasinghe, S. (2018). A Novel Data-Driven Boolean Model for Genetic Regulatory Networks. Frontiers in Physiology 9 : 1328. DOI: 10.3389/fphys.2018.01328.

Dror, A., Shemesh, E., Dayan, N., & Fishman, A. (2014). Protein Engineering by Random Mutagenesis and Structure-Guided Consensus of Geobacillus stearothermophilus Lipase T6 for Enhanced Stability in Methanol. Applied and Environmental Microbiology 80(4) : 1515–1527. DOI: 10.1128/AEM.03371-13.

Elemosho, R., Suwanto, A., & Thenawidjaja, M. (2021). Extracellular Expression in Bacillus subtilis of a Thermostable Geobacillus stearothermophilus Lipase. Electronic Journal of Biotechnology 53 : 71–79. DOI: 10.1016/j.ejbt.2021.07.003.

Fährrolfes, R., Bietz, S., Flachsenberg, F., Meyder, A., Nittinger, E., Otto, T., Volkamer, A., & Rarey, M. (2017). Proteins Plus: A Web Portal for Structure Analysis of Macromolecules. Nucleic Acids Research 45(1) : 337–343. DOI: 10.1093/nar/gkx333.

Filloux, A. (2022). Bacterial Protein Secretion Systems: Game of Types. Microbiology 168(5) : 1193. DOI: 10.1099/mic.0.001193.

Freudl, R. (2018). Signal Peptides for Recombinant Protein Secretion in Bacterial Expression Systems. Microbial Cell Factories 17(1) : 52. DOI: 10.1186/s12934-018-0901-3.

Gupta, S., & Pal, D. (2021). Clusters of Hairpins Induce Intrinsic Transcription Termination in Bacteria. Scientific Reports 11(1) : 16194. DOI: 10.1038/s41598-021-95435.

Hatsuzawa, K., Tagaya, M., & Mizushima, S. (1997). The Hydrophobic Region of Signal Peptides is a Determinant for Srp Recognition and Protein Translocation Across the ER Membrane. The Journal of Biochemistry 121(2) : 270–277. DOI: 10.1093/oxfordjournals.jbchem. a021583.

Hitch, T. C. A., & Clavel, T. (2019). A Proposed Update for the Classification and Description of Bacterial Lipolytic Enzymes. PeerJ 7 : e7249. DOI: 10.7717/peerj.7249.

Kamal, M. Z., Mohammad, T. A. S., Krishnamoorthy, G., & Rao, N. M. (2012). Role of Active Site Rigidity in Activity: Md Simulation and Fluorescence Study on a Lipase Mutant. PLoS One 7(4) : e35188. DOI: 10.1371/journal.pone.0035188.

Khan, F. I., Lan, D., Durrani, R., Huan, W., Zhao, Z., & Wang, Y. (2017). The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Frontiers in Bioengineering and Biotechnology 5 : 16. DOI: 10.3389/fbioe.2017.00016.

Kleiner‐Grote, G. R. M., Risse, J. M., & Friehs, K. (2018). Secretion of Recombinant Proteins from E. coli. Engineering in Life Sciences 18(8) : 532–550. DOI: 10.1002/elsc.201700200.

Koop, J., Merz, J., Pietzsch, C., & Schembecker, G. (2020). Contribution of Secondary Structure Changes to The Surface Activity of Proteins. Journal of Biotechnology 323 : 208–220. DOI: 10.1016/j.jbiotec.2020.07.015.

Maffei, B., Francetic, O., & Subtil, A. (2017). Tracking Proteins Secreted by Bacteria: What’s in the Toolbox? Frontiers in Cellular and Infection Microbiology 7 : 221. DOI: 10.3389/fcimb.2017.00221.

Mazaya, M., Trinh, H.-C., & Kwon, Y.-K. (2017). Construction and Analysis of Gene-Gene Dynamics Influence Networks Based on a Boolean Model. BMC Systems Biology 11 : 101–111. DOI: 10.1186/s12918-017-0509-y.

Morita, T., Nishino, R., & Aiba, H. (2017). Role of The Terminator Hairpin in the Biogenesis of Functional Hfq-binding sRNAs. Rna 23(9) : 1419–1431. DOI: 10.1261/rna.060756.117.

Oesterle, S., Gerngross, D., Schmitt, S., Roberts, T. M., & Panke, S. (2017). Efficient Engineering of Chromosomal Ribosome Binding Site Libraries in Mismatch Repair Proficient Escherichia coli. Scientific Reports 7(1) : 12327. DOI: 10.1038/s41598-017-12395-3.

Omotajo, D., Tate, T., Cho, H., & Choudhary, M. (2015). Distribution and Diversity of Ribosome Binding Sites in Prokaryotic Genomes. BMC Genomics 16 : 1–8. DOI: 10.1186/s12864-015-1808-6.

Owji, H., Nezafat, N., Negahdaripour, M., Hajiebrahimi, A., & Ghasemi, Y. (2018). A Comprehensive Review of Signal Peptides: Structure, Roles, and Applications. European Journal of Cell Biology 97(6) : 422–441. DOI: 10.1016/j.ejcb.2018.06.003.

Panizza, P., Cesarini, S., Diaz, P., & Giordano, S. R. (2015). Saturation Mutagenesis in Selected Amino Acids to Shift Pseudomonas sp. Acidic Lipase Lip i. 3 Substrate Specificity and Activity. Chemical Communications 51(7) : 1330–1333. DOI: 10.1039/C4CC08477B.

Petersen, T., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785–786. DOI:10.1038/nmeth.1701

Pournejati, R., Karbalaei-Heidari, H. R., & Budisa, N. (2014). Secretion of Recombinant Archeal Lipase Mediated by SVP2 Signal Peptide in Escherichia Coli And its Optimization by Response Surface Methodology. Protein Expression and Purification 101 : 84–90. DOI: 10.1016/j.pep.2014.05.012

Rakesh, K., Nisha, C., Ranvir, S., Pushpender, K. S., & Jagdeep, K. (2015). Engineering of a Lipase Towards Thermostability: Studies on Additive Effect of the Two Thermo-Stabilising Mutations at Protein Surface. Adv. Genet Eng 4(126) : 111–2169. DOI: 10.4172/2169-0111.1000126.

Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of Microbial Enzymes in Food Industry. Food Technology and Biotechnology 56(1) : 16. DOI: 10.17113/ftb.56.01.18.5491.

Ray-Soni, A., Bellecourt, M. J., & Landick, R. (2016). Mechanisms of Bacterial Transcription Termination: All Good Things Must End. Annual Review of Biochemistry 85 : 319–347. DOI: 10.1146/annurev-biochem-060815-014844.

Santarossa, G., Lafranconi, P. G., Alquati, C., DeGioia, L., Alberghina, L., Fantucci, P., & Lotti, M. (2005). Mutations in the “Lid” Region Affect Chain Length Specificity and Thermostability of a Pseudomonas fragi lipase. FEBS Letters 579(11) : 2383–2386. DOI: 10.1016/j.febslet.2005.03.037.

Syah, M. A., Satya, A. A., Puspitasari, E., Suwanto, A., & Mubarik, N. R. (2023). Cloning and Co-Expression of Lipase and its Specific Foldase from Ralstonia pickettii BK6. HAYATI Journal of Biosciences 30(1) : 71–80. DOI : 10.4308/hjb.30.1.71-80.

Volkenborn, K., Kuschmierz, L., Benz, N., Lenz, P., Knapp, A., & Jaeger, K.-E. (2020). The Length of Ribosomal Binding Site Spacer Sequence Controls the Production Yield for Intracellular and Secreted Proteins by Bacillus subtilis. Microbial Cell Factories 19 : 1–12. DOI: 10.1186/s12934-020-01404-2.

Von Heijne, G. (1990). The Signal Peptide. The Journal of Membrane Biology 115 : 195–201. DOI: 10.1007/BF01868635.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., & Bordoli, L. (2018). SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Research 46(W1) : W296–W303. DOI: 10.1093/nar/gky427.

Wolfenden, R., Lewis Jr, C. A., Yuan, Y., & Carter Jr, C. W. (2015). Temperature Dependence of Amino Acid Hydrophobicities. Proceedings of the National Academy of Sciences 112(24) : 7484–7488. DOI: 10.1073/pnas.1507565112.

Wu, Z., Yang, K. K., Liszka, M. J., Lee, A., Batzilla, A., Wernick, D., Weiner, D. P., & Arnold, F. H. (2020). Signal Peptides Generated by Attention-Based Neural Networks. ACS Synthetic Biology 9(8) : 2154–2161. DOI: 10.1021/acssynbio.0c00219.

Yuzbasheva, E.Y., Gotovtsev, P.M., Mostova, E.B., Sineokii, S.P. (2014). Biodiesel production via enzymatic catalysis. Appl Biochem Microbiol 50: 737–749. DOI: 10.1134/S0003683814080067

Zhang, M., Song, J., Xiao, J., Jin, J., Nomura, C. T., Chen, S., & Wang, Q. (2022). Engineered Multiple Translation Initiation Sites: A Novel Tool to Enhance Protein Production in Bacillus Licheniformis and Other Industrially Relevant Bacteria. Nucleic Acids Research 50(20) : 11979–11990. DOI: 10.1093/nar/gkac1039.

Zhang, W., Lu, J., Zhang, S., Liu, L., Pang, X., & Lv, J. (2018). Development an Effective System to Expression Recombinant Protein in E. coli via Comparison and Optimization of Signal Peptides: Expression of Pseudomonas fluorescens BJ-10 Thermostable Lipase as Case Study. Microbial Cell Factories 17 : 1–12. DOI: 10.1186/s12934-018-0894-y.




DOI: https://doi.org/10.15575/biodjati.v9i2.33770

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Biodjati

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/

Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats
slot https://bursaikan.kkp.go.id/obc/ https://www.assets.rpg.co.id/ https://www.linkandthink.org/ Slot Gacor https://www.theyashotel.com/ https://elearning.itbwigalumajang.ac.id/ https://bapeten.go.id/upload/ https://sentraki.itbwigalumajang.ac.id/ https://lppm.itbwigalumajang.ac.id/ https://bkombandung.kemkes.go.id/ slot gacor hari ini https://sinovik.kemkes.go.id/assets/run/ https://pdcproductions.com/ https://kkp.umt.ac.id/ https://csirt.sulbarprov.go.id/uploads/