Effect of Water Temperature to Survival and Development of Larvae of Two Local Aedes Aegypti Strains


Ramadhani Eka Putra(1*), Gunadi Trinuroni(2)

(1) School of Life Sciences and Technology, Institut Teknologi Bandung (ITB) Jalan Ganesha No. 10 Bandung 40132 Indonesia, Indonesia
(2) School of Life Sciences and Technology, Institut Teknologi Bandung (ITB) Jalan Ganesha No. 10 Bandung 40132 Indonesia,  
(*) Corresponding Author

Abstract


 

 Global warming has been reported in last decades. Chang-es in average Earth’s temperature may affect the physiology of many insect species, especially the ones which act as a human disease vec-tor, like Aedes aegypti. In this study, the effect of increasing water temperature on physiological components related to development period, sex ratio, and body size of two distinctively strains, VCRU (Vector Control Research Unit) and Pangandaran. Thirty larvae of each strain kept inside distilled water with the temperature of 25°C, 27°C, 30°C, 33°C, 35°C, 40°C which replicated three times. Observa-tions were conducted until all larvae metamorphed into adults or all larvae dead. Development rate and time were analyzed by frequency dependent mean. The result showed that the optimum temperature for larvae development of VCRU strain was 27-30°C with a survival rate of 84% while it was 30°C for Pangandaran strain, with the surviv-al rate of 83%. Larvae of both strains showed 100% mortality rate when kept inside a container with water temperature exceed 33°C. Both strains showed the highest and the lowest male:female ratio at similar water temperature which were 33°C and 30°C, respec-tivelly. Highest and lowest ratio of VCRU was 1.25 and 0.6, respec-tively, while it was 1.4 and 0.6 for Pangandaran. In general, larvae lived in increasing water temperature showed reducing wing width. 


Keywords


Aedes aegypti, development, sex ratio, survivorship, water temperature

Full Text:

PDF

References


Ahmad, I., Astari, S. & Tan, M.(2007). Resist-ance of Aedes aegypti (Diptera: Culici-dae) in 2006 to Pyrethroid Insecticides in Indonesia and its Association with Oxidase and Esterase Levels. Pakistan Journal of Biological Sciences, 10(20), 3688-3692.

Alto, B. W. & Juliano, S. A. (2001). Precipi-tation and Temperature Effects on Pop-ulations of Aedes albopictus (Diptera: Culicidae): Implications for Range Ex-Pansion. Journal of Medical Entomolo-gy, 38, 646-656.

Armbruster, P. & Hutchinson, R. A. (2002). Pupal Mass and Wing Length as Indi-cators of Fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culici-dae). Journal of Medical Entomology, 39(4), 699-704.

Atkinson, D. & Sibly, R. M. (1997). Why are Organisms Usually Bigger in Colder Environments? Making Sense of Life History Puzzle. Trends in Ecology & Evolution, 12, 235-239.

Bai, L., Morton, L. C. & Liu, Q. (2013). Climate Change and Mosquito Born-Dis-eases in China: a Review. Globalization and Health, 9, 1-22.

Bar-Zeev, M. (1958). The Effect of Temper-ature on the Growth Rate and Survival of the Immature Stages of Aëdes aegyp-ti (L.). Bulletin of Entomological Re-search, 49, 157-163.

Bayoh, M. N. & Lindsay, S. W. (2003). Effect of Temperature on the Development of the Aquatic Stages of Anopheles gam-biae sensu stricto (Diptera: Culicidae). Bulletin of Entomological Research, 93, 375-381.

Bayoh, M. N. & Lindsay, S. W. (2004). Tem-perature-Related Duration of Aquatic Stages of the Afrotropical Malaria Vec-tor Mosquito Anopheles gambiae in the Laboratory. Medical and Veterinary En-tomology, 18, 174-179.

Bhatt, S., Gething, P. W., Brady, O. J., Messi-na, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R. W., Sim-mons, C. P., Scott, T. W., Farrar, J. J. & Hay, S. I. (2013). The Global Distri-bution and Burden of Dengue. Nature, 496, 504-507.

Blackmore, M. S. & Lord, C. C. (2000). The Relationship Between Size and Fecun-dity in Aedes albopictus. Journal of Vector Ecology, 25, 212-217.

Bond, H. A. & Fay, R. W. (1969). Factors In-fluencing Aedes aegypti Occurrence in Containers. Mosquito News, 29, 113-116.

Briegel, H. (1990a). Fecundity, Metabolism, and Body Size in Anopheles (Diptera: Culicidae), Vectors of Malaria. Journal of Medical Entomology, 27, 839-850.

Briegel, H. (1990b). Metabolic Relationship Between Female Body Size, Reserves, and Fecundity of Aedes aegypti. Jour-nal of Insect Physiology, 36, 165-172.

Briegel, H. & Timmermann, S. E. (2001). Aedes albopictus (Diptera: Culicidae): Physiological Aspects of Development and Reproduction. Journal of Medical Entomology, 38, 566-571.

Campbell, L. P., Luther, C., Moo-Llanes, D., Ramsey, J. M., Danis-Lozano, R. & Pe-terson, A. T. (2015). Climate Change Influences on Global Distributions of Dengue and Chikungunya Virus Vec-tors. Philosophical Transactions of the Royal Society B Biological Sciences, 370.

Carron, A. (2007). Correlation Between Wing Measurements and Dry Body Weight in Male and Female Ochlerotatus (Ochle-rotatus) caspius (Pallas, 1771) (Diptera: Culicidae). Journal of the European Mosquito Control Association, 24, 4-8.

Cha, S.J., Mori, A., Chadee, D. D. & Sever-son, D. W. (2006). Cage Trials Using an Endogenousmeiotic Drive Gene in the Mosquito Aedes aegypti to Promote Population Replacement. The American Journal of Tropical Medicine and Hy-giene, 74, 62-68.

Chadee, D. D. (2003). Surveillance for the Dengue Vector Aedes aegypti in Toba-go, West Indies. Journal of the Ameri-can Mosquito Control Association, 19, 199-205.

Chadee, D. D. & Beier, J. C. (1997). Factors Influencing the Duration of Blood-Feed-ing by Laboratory-Reared and Wild Ae-des aegypti (Diptera: Culicidae) from Trinidad, West Indies. Annals of Tropi-cal Medicine and Parasitology, 91, 199- 207.

Chadee, D. D. & Rahaman, A. (2000). Use of Water Drums by Humans and Aedes aegypti in Trinidad. Journal of Vector Ecology, 25, 28-33.46

Chadee, D. D., Williams, F. L. R. & Kitron, U. (2004). Epidemiology of Dengue Fever in Trinidad West Indies: the Outbreak of 1998. Annals of Tropical Medicine and Parasitology, 98, 305-312.

Chambers, G. M. & Klowden, M. J. (1990). Correlation of Nutritional Reserves with a Critical Mass for Pupation in Larval Aedes aegypti Mosquitos. Jour-nal of the American Mosquito Control Association, 6, 394-399.

Ciota, A. T., Matacchiero, A. C., Kilpatrick, A. M. & Kramer, L. D. (2015). The Effect of Temperature on Life History Traits of Culex Mosquitoes. Journal of Medical Entomology, 51(1), 55-62.

Costa, E. A. P. A., Santos, E. M. M., Correia, J. C. & Albuquerque, C. M. R. (2010). Impact of Small Variations in Tempera-ture and Humidity on the Reproductive Activity and Survival of Aedes aegypti (Diptera: Culicidae). Revista Brasileira de Entomologia, 54, 488-493.

Couret, J., Dotson, E. & Benedict, M. Q. (2014). Temperature, Larval Diet and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae). PLoS One, 9.

Focks, D. A., Brenner, R. J., Hayes, J. & Dan-iels, E. (2000). Transmission Thresh-olds for Dengue in Terms of Aedes ae-gypti Pupae per Person with Discussion of their Utility in Source Reduction Ef-forts. The American Journal of Tropical Medicine and Hygiene, 62, 11-18.

Gillott, C. (2005). Entomology Third Edition. Publised by Springer. Dordrecth.

Githeko, A. K., Lindsay, S. W., Confalonie-ri, U. E. & Patz, J. A. (2000). Climate Change and Vector-Borne Diseases: a Regional Analysis. Bulletin of the World Health Organization, 78, 1136-1147.

Gubler, D. J. & Clark, G. G. (1995). Den-gue/Dengue Hemorrhagic Fever: the Emergence of a Global Health Problem. Emerging Infectious Diseases, 1(2), 55- 57.

Gunay, F., Alten, B. & Ozsoy, E. D. (2011). Narrow-Sense Heritability of Body Size and its Response to Different Develop-mental Temperatures in Culex quinque-fasciatus (Say 1923). Journal of Vector Ecology, 36, 348-354.

Hopp, M. J. & Foley, J. A. (2001). Glob-al-Scale Relationships Between Climate and the Dengue Fever Vector, Aedes ae-gypti. Climatic Change 48, 441-463.

Hemme, R. R., Tank, J. L., Chadee, D. D. & Severson, D.W. (2009). Environmental Conditionsin Water Storage Drums and Influences on Aedes aegypti in Trinidad West Indies. Acta Tropica, 112, 59-66.

IPCC (1995). Intergovernmental Panel on Climate Change (IPCC), WMO/UNEP. A Second Assessment Report of the Intergovernmental Panel on Climate Change, 1–73.

Kamimura, K., Matsuse, I. T., Takahashi, H., Komukai, J., Fukuda, T., Suzuki, K., Aratani, M.,Shirai, Y. & Mogi, M. (2002). Effect of Temperature on the Development of Aedes aegypti and Ae-des albopictus. Medical Entomology and Zoology, 53(1), 53-58.

Keirans, J. E. & Fay, R. W. (1968). Effect of Food and Temperature on Aedes aegypti (L.) and Aedes triseriatus (Say) Larval Development. Mosquito News, 28, 338- 341.

Kemenkes RI. (2016). Infodatin 2016 (Situ-asi Demam Berdarah Dengue di Indo-nesia). Jakarta: Pengolahan Data dan Informasi, Kementerian Kesehatan Re-publik Indonesia. (in Indonesian)

Livdahl, T. P. & Wiley, M. S. (1991). Pros-pects for an Invasion: Competition Between Aedes albopictus and Native Ae-des triseriatus. Science, 253, 189-191.

Loetti, V., Schwiegmann, N. J. & Burroni, N.E. (2009). Temperature Effect on the Immature Development Time of Culex eduardoi Casal & Gracia (Diptera: Cul-icidae). Neotropical Entomology, 40(1), 138-142

Lounibos, L. P., Sua´rez, S., Mene´ndez, Z., Nishimura, N., Escher, R. L., O’Con-nell, S. M. & Rey, J. R. (2002). Does Temperature Affect the Outcome of Larval Competition Between Aedes ae-gypti and Aedes albopictus?. Journal of Vector Ecology, 27, 86-95.

Lourenco-de-Oliveira, R., Honorio, N. A., Castro, M. G., Schatzmayr, H. G., Mia-gostovich, M. P., Alves, J. C. R., Silva, W. C., Leite, P. J. & Nogueira, R. M. (2002). Dengue Virus Type 3 Isolation from Aedes aegypti in the Municipality of Nova Iguacu, State of Rio deJaneiro. Memorias do Instituto Oswaldo Cruz, 97, 799-800.

Lyimo, E. O., Takken, W. & Koella, J. C. (1992). Effects of Rearing Temperature and Larvaldensity on Larval Surviv-al, Age at Pupation and Adult Size of Anopheles gambiae. Entomologia Ex-perimentalis et Applicata, 63, 265-271.

Marinho, R. A., Beserra, E. B., Bezerra-Gus-mao, M. A., Porto, V. S., Olinda, R. A., & dos Santos, C. A. C. (2016). Effects of Temperature on the Life Cycle, Ex-Pansion and Dispersion of Aedes aegyp-ti (Diptera: Culicidae) in Three Cities in Paraiba, Brazil. Journal of Vector Ecol-ogy, 41(1), 1-10.

Mohammed, A. & Chadee, D. D. (2011). Ef-fect of Temperature Regimens of Aedes aegypti (L) (Diptera: Culicidae) Mos-quitoes. Acta tropica, 119, 38-43.

Morrison, A. C., Zielinski-Gutierrez, E., Scott, T. W. & Rosenberg, R. (2008). Defining Challenges and Proposing Solutions for Control of the Virus Vector Aedes ae-gypti. PLoS Medicine, 5, 68.

Mourya, D. T., Yadav, P. & Misra, A. C. (2004). The Effect of Temperature Stress on Immature Stages and Suscep-tibility of Aedes aegypti Mosquitoes to Chikungunya Virus. The American Journal of Tropical Medicine and Hy-giene, 70, 346-350.

Nene, V., Wortman, J. R., Lawson, D., Haas, B., Kodira, C., Tu, Z. J., Sinkins, S. P., Hogenkamp, D. G., Amedeo, P., Arens-burger, P., Atkinson, P.W, Bidwell, S., Biedler, J., Birney, E., Bruggner, R. V., Costas, J., Coy, M. R., Crabtree, J., Crawford, M., Debruyn, B., De-caprio, D., Eiglmeier, K., Eisenstadt, E., El-Dorry, H., Gelbart, W. M., Gomes, S. L., Hammond, M., Hannick, L. I., Hogan, J. R., Holmes, M. H., Jaffe, D., Johnston, J. S., Kennedy, R. C., Koo, H., Kravitz, S., Kriventseva, E. V., Kulp, D., Labutti, K., Lee, E., Li, S., Lovin, D. D., Mao, C., Mauceli, E., Menck, C. F., Miller, J. R., Montgomery, P., Mori, A., Nascimento, A. L., Naveira, H. F., Nus-baum, C., O’leary, S., Orvis, J., Pertea, M., Quesneville, H., Reidenbach, K. R., Rogers, Y. H., Roth, C. W., Schneider, J. R., Schatz, M., Shumway, M., Stanke, M., Stinson, E. O., Tubio, J. M., Vanzee, J. P., Verjovski-Almeida, S., Werner, D., White, O., Wyder, S., Zeng, Q., Zhao, Q., Zhao, Y., Hill, C. A., Raikhel, A. S., Soares, M. B., Knudson, D. L., Lee, N. H., Galagan, J., Salzberg, S. L., Pauls-en, I. T., Dimopoulos, G., Collins, F. H., Birren, B., Fraser-Liggett, C. M. & Sev-erson, D. W. (2007). Genome Sequence of Aedes aegypti, a Major Arbovirus Vector. Science, 316, 1718-1723.

Van Lieshout, M., Kovats, R. S., Livermore, M. T. J. & Martens, P. (2004). Cli-mate Change and Malaria: Analysis of the SRES Climate and Socio-Eco-nomic Scenarios. Global Environment Change, 14, 87-99

Williams, C. R., Gina, M., Ritchie, S. A., Vi-ennet, E. & Harley, D. (2014). Bionom-ic Response of Aedes aegypti to Two Future Climate Change Scenarios in Far North Queensland, Australia: Implica-tions for Dengue Outbreaks. Parasite & Vectors, 7, 447.

Yang, H. M., Macoris, M. L. G., Galvani, K. C., Andrighetti, M. T. M. & Wanderley, D. M. (2009). Assessing the Effects of Temperature on the Population of Aedes aegypti, the Vector of Dengue. Epidemi-ology & Infection, 137, 1188-1202.

Zapletal, J., Erraguntla, M., Adelman, Z. N., Myles, K. M. & Lawley, M. A. (2018). Impacts of Diurnal Temperature and Larval Density on Aquatic Develop-ment of Aedes aegypti. PLoS ONE, 13(3).




DOI: https://doi.org/10.15575/biodjati.v4i1.3843

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Biodjati



Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats