Growth and Flavonoid Content of Gynura procumbens (Lour) Merr. in Different Soil Water Content
DOI:
https://doi.org/10.15575/biodjati.v4i2.4446Keywords:
flavonoid, G. procumbens, soil water contentAbstract
Gynura procumbens contains tannins, saponins, steroids, triterpenoids, essential oils and flavonoids which have bioactivity as a medicine for various diseases. One effort to obtain the quality of medicinal plants uses management of soil water content. The opti-mum of soil water content will support optimal growth of a plant. Whereas in conditions of low soil water content resulted in the induc-tion of the production of secondary metabolites as a self-defense sys-tem. This study aimed to determine the effect of soil moisture content on the growth and total content of plant flavonoids G. procumbens. This study was carried out experimentally using a one-factor com-plete randomized design (CRD) consisting of 4 treatments with five replications. The treatment used is the difference in soil water content of 40%, 60%, 80% and 100% field capacity. The data obtained in the form of quantitative data will be analyzed by One Way ANOVA Test. Measurement of the content of total flavonoid compounds was car-ried out using UV-Vis spectrophotometer analysis. The results of the study indicate the influence of soil moisture level on the growth and total content of G. procumbens. Parameter growth of fresh weight, dry weight, and root G. procumbens showed an increase in 40% soil water content. The flavonoid content showed the highest total flavo-noid content 18.884 mg/g in the 40% field capacity soil water contentÂ
References
Anggarwulan, E. & Mudyantini, W. (2005). Pengaruh Ketersediaan Air terhadap Pertumbuhan dan Kandungan Bahan Aktif Saponin Tanaman Ginseng Jawa ( Talinum paniculatum Gaertn.). Biofar-masi, 3(2), 47-51.
Bergmark, C. S. K. C. L. (1987). Growth and Development of the Florunner Peanut Cultivar as Influenced by Population, Planting Date and Water Availability. Peanut Science, 14, 11–16.
Chan, L. K., Lim, S. Y. & Pan, L. P. (2009). Micropropagation of Gynura procum-bens (Lour.) Merr. an important medic-inal plant. Journal of Medicinal Plants Research, 3(3), 105–111.
Chang, C., Yang, M., Wen, H. & Chern, J. (2002). Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Journal of Food and Drud Analysisi, 10(3), 178–182.
Dash, P. R. (2016). A Comprehensive Review on Gynura procumbens Leaves. IJP, 3(4), 167–174.
Drenovsky, R. E., Vo, D., Graham, K. J., & Scow, K. M. (2004). Soil Water Content and Organic Carbon Availability Are Major Determinants of Soil Microbial Community Composition. Microbial Ecology, 48(3), 424–430.
Ghasemi, S., Kumleh, H. H. & Kordrostami, M. (2019). Changes in the Expression of Some Genes Involved in the Bio-synthesis of Secondary Metabolites in Cuminum cyminum L . Under UV Stress. Protoplasma, 256, 279–290.
Gopinath, P. & Pavadai, P. (2015). Morpholo-gy and Yield Parameters and Biochem-ical Analysis of Soybean (Glycine max (L.) Mrr.) Using Gamma Rays, EMS and DES Treatment. International Let
ters of Natural Sciences, 35, 50–58.
Hendriyani, I. S. & Setiari, N. (2009). Kand-ungan Klorofil dan Pertumbuhan Ka-cang Panjang (Vigna sinensis) pada Tingkat Penyediaan Air yang Berbeda. J.Sains & Mat., 17(3), 145–150.
Nakabayashi, R., Mori, T. & Saito, K. (2014). Alternation of Flavonoid Accumulation Under Drought Stress in Arabidopsis thaliana. Plant Signaling and Behavior, 9(8), e29518-1-e29518-3.
Rahmah, Munifatul Izzati, S. P. (2014). Pen-garuh Pupuk Organik Cair Berbahan Dasar Limbah Sawi Putih (Brassi-ca chinensis L.) Terhadap Pertumbu-han Tanaman Jagung Manis. Buletin Anatomi dan Fisiologi, 22(1), 65–71.
Rebey, I. B., Jabri-karoui, I., Hamrouni-sella-mi, I. & Bourgou, S. (2012). Effect of Drought on the Biochemical Composi-tion and Antioxidant Activities of cum-in (Cuminum cyminum L .) seeds Effect of Drought on the Biochemical Com-position and Antioxidant Activities of Cumin (Cuminum cyminum L.) seeds. Industrial Crops & Products, 36(1), 238–245.
Sullivan, B. P. (2002). Drought Resistant Oil. NCAT Agriculture Specialist.
Xu, Z., Zhou, G. & Shimizu, H. (2010). Plant Responses to Drought and Rewatering. Plant Signaling and Behavior, 5(6), 649–654.
Yam, M. F., Sadikun, A., Asmawi, M. Z. & Rosidah. (2008). Antioxidant Potential of Gynura procumbens. Pharmaceuti-cal Biology, 46(9), 616–625.
Yang, Y., He, F., Yu, L., Chen, X., Lei, J., & Ji, J. (2007). Influence of Drought on Oxidative Stress and Flavonoid Produc-tion in Cell Suspension Culture of Gly-cyrrhiza inflata Batal. Zeitschrift Für Naturforschung C, 62(5–6), 410–416.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2019 Jurnal Biodjati

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright and Attribution:
Copyright of published in Jurnal Biodjati is held by the journal under Creative Commons Attribution (CC-BY-NC-ND) copyright. The journal lets others distribute and copy the article, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as an tranlation), include in collective works (such as an anrhology), text or data mine the article, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article and do not modify the article in such a way as to damage the author's honor or reputation.
Permissions:
Authors wishing to include figures, tables, or text passages that have already been published elsewhere and by other authors are required to obtain permission from the copyright owner(s) for both the print and online format and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate of one of the authors.
Ethical matters:
Experiments with animals or involving human patients must have had prior approval from the appropriate ethics committee. A statement to this effect should be provided within the text at the appropriate place. Experiments involving plants or microorganisms taken from countries other than the authors own must have had the correct authorization for this exportation.