Total Lactic Acid, Protein, Fat, and Carbohydrates in Curd Kefir and Cow Colostrum Kefir


Tuti Kurniati(1*), Neneng Windayani(2), Milla Listiawati(3)

(1) Department of Biology Education, Faculty of Tarbiyah and Teacher training UIN Sunan Gunung Djati Bandung, Jl. Cimencrang, Panyileukan, Cimencrang, Gedebage, Kota Bandung, Jawa Barat 40292, Indonesia
(2) Department of Chemistry Education, Faculty of Tarbiyah and Teacher training UIN Sunan Gunung Djati Bandung, Jl. Cimencrang, Panyileukan, Cimencrang, Gedebage, Kota Bandung, Jawa Barat 40292, Indonesia
(3) Department of Biology Education, Faculty of Tarbiyah and Teacher training UIN Sunan Gunung Djati Bandung, Jl. Cimencrang, Panyileukan, Cimencrang, Gedebage, Kota Bandung, Jawa Barat 40292,  
(*) Corresponding Author

Abstract


There are differences in the content of lactic acid, fat, pro-tein and carbohydrates in the curd kefir and colostrum kefir. The aims of this study were to determine the content of lactic acid, protein, fat, and carbohydrates of curd kefir and colostrum kefir based on the con-centration of starter and fermentation time. Experimental data were collected from a number of experiments at a temperature of 28°C. The method used was the experimental method of CRD 3 × 3 with 3 replications, the data were analyzed by analysis of variance. Good kefir contained high lactic acid, proteins, and carbohydrate and low in fat. The results showed curd kefir with the highest lactic acid con-tent of 1.59 % was at a starter concentration of 20% and a fermen-tation time of 72 hours (d2w3), the highest protein of 2.20% was at a starter concentration of 30% and a fermentation time of 72 hours (d3w3), the lowest fat of 1.16% found at a starter concentration of 30% and a fermentation time of 72 hours (d3w3), and the highest carbohydrate of 4.81% found at a starter concentration of 30% and a fermentation time of 72 hours (d3w3). Whereas in colostrum ke-fir with the highest lactic acid content of 2.83 % found at a starter concentration of 20% and a fermentation time of 72 hours (d2w3), the highest protein of 6.13 % was at a starter concentration of 10% and a fermentation time of 24 hours (d1w1), the lowest fat of 1.58% was at a starter concentration of 30% and fermentation time of 24 hours (d3w1) and the highest carbohydrate content of 17.91% was at a starter concentration of 30% and a fermentation time of 72 hours (d3w3). It can be concluded that the starter concentration and fer-mentation time have a significant effect (α <0.05) on lactic acid, pro-tein, fat, and carbohydrates content of curd kefir and kefir colostrum. 


Keywords


carbohydrates, colostrum kefir, curd kefir, fat, lactic acid, protein

Full Text:

PDF

References


Afiati, F., Setiyoningrum, F. & Priadi, G. (2018). Karakterisasi Curd Kefir Susu Sapi dengan Penambahan Umbi Bit (Beta vulgaris). Characterization of Curd Kefir Milk with the Addition of Beetroot (Beta vulgaris). Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia Volume 4, Nomor 2. 270-273.

Al-Shemmari, I. G. M., Altaee, R. A. M. K. & Hassan, A. H. (2018). Evaluation of the Antidiabetic and Antihyperlipidemic activity of Kefir in Alloxan-in-duced Diabetes Mellitus Rats. Scientific Journal of Medical Research, 2(6), 83- 86.

Amorim, F. G., Coitinho, L. B., Dias, A. T., Friques, A. G. F., Monteiro, B. L., de Rezende, L. C. D., Pereira, T. M. C., Campagnaro, B. P., de Pauw, E., Vasquez, E. C. & Quinton, L. (2019). Identification of New Bioactive Pep-tides from Kefir Milk Through Proteo-peptidomics: Bioprospection of Antihypertensive Molecules. Food Chemis-try, 282, 109-119.

AOAC. (1984). Official Methods of Analysis of the Association of Official Analytical Chemist, 14th Edition Arlington. Virginia.

Balthazar, C. F., Pimentel, T. C., Ferrão, L. L., Almada, C. N., Santillo, A., Alben-zio, M., Mollakhalili, N., Mortazavian, A. M., Nascimento, J. S., Silva, M. C., Freitas, M. Q., Sant’Ana, A. S., Grana-to, D. & Cruz, A. G. (2017). Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food De-velopment. Comprehensive Reviews in Food Science and Food Safety, 16(2), 247-262.

Bengoa, A. A., Iraporda, C., Garrote, G. L. & Abraham, A. G. (2018). Kefir Microorganisms: their Role in Grain Assembly and Health Properties of Fermented milk. Journal of Applied Microbiology, 126(3), 686-700.

Chen, Z., Shi, J., Yang, X., Nan, B., Liu, Y. & Wang, Z. (2015). Chemical and Physi-cal Characteristics and Antioxidant Ac-tivities of the Exopolysaccharide Pro-duced by Tibetan Kefir Grains during Milk Fermentation. International Dairy Journal, 43, 15-21.

Dos Reis, S. A., da Conceição, L. L., Sique-ira, N. P., Rosa, D. D., da Silva, L. L. & Peluzio, M. do C. G. (2017). Review of the Mechanisms of Probiotic Actions in the Prevention of Colorectal Cancer. Nutrition Research, 37, 1-19.

Gul, O., Atalar, I., Mortas, M. & Dervisoglu, M. (2018). Rheological, Textural, Color, and Sensorial Properties of Kefir Produced with Buffalo Milk using Kefir Grains and Starter Culture: A Compari-son with Cows' Milk Kefir. International

Journal of Dairy Technology, 71(1), 73- 80.

Herawati, D. A. & Wibawa, D. A. A. (2011). Pengaruh Konsentrasi Susu Skim dan Waktu Fermentasi terhadap Hasil Pem-buatan Soyghurt. Jurnal Ilmiah Teknik Lingkungan, 1(2), 452-329.

Hikmetoglu, M., Sogut, E. & Sogut, O. (2020). Changes in Carbohydrate Pro-file in Kefir Fermentation. Bioactive Carbohydrates and Dietary Fibre, 23.

Hopker A, Pandey N, Goswami J, Hopker S, Saikia R, Jennings A, Saikia, D., Sar-gison, N. & Marsland, R. (2020) Co-lostrum Provision and Care of Calves Among Smallholder Farmers in the Ka-ziranga Region of Assam, India. PLoS ONE, 15(3), e0228819.

Iskandar, C. F., Cailliez-Grimal, C., Borges, F., Junelles, R. & Marie, A. (2019). Re-view of lactose and galactose metabo-lism in Lactic Acid Bacteria dedicated to expert genomic annotation. Trends in Food Science & Technology, 88(24), 121-132.

Ismail, Y. S., Yulvizar, C. & Mazhitov, B. (2018). Characterization of Lactic Acid Bacteria from Local Cow´s Milk Kefir. IOP Conference Series: Earth and En-vironmental Science, 130, 1-8.

Izquierdo-González, J. J., Amil-Ruiz, J., Zazzu, S., Sánchez-Lucas, R., Fuentes-Al-magro, C. A. & Rodríguez-Ortega, M. J. (2019). Proteomic Analysis of Goat Milk Kefir: Profiling the Fermenta-tion-time Dependent Protein Digestion and Identification of Potential Peptides with Biological Activity. Food Chemistry, 295, 456-465.

Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M. & Desobry, S. (2010). Poly‐lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Sci-ence and Food Safety, 9(5), 552-571.

Kim, D., Jeong, D., Song, K. & Seo, K. (2018). Comparison of Traditional and Backslopping Methods for Kefir Fer-mentation Based on Physicochemical and Microbiological Characteristics. LWT - Food and Science Technology, 97, 503-507.

Kurniati, T., Windayani, N. & Listiawati, M. (2018). Anti Odor Activity of Milk Ke-fir on Organosulfur Polysulfide Cyclic Compounds in Petai (Parkia speciosa Hassk). Journal of Physics: Confer-ence Series 5th International Seminar of Mathematics, Science, and Computer Science Education.

Laureys, D., Aerts, M. & Vandamme, P. (2018). Oxygen and Diverse Nutrients Influence the Water Kefir Fermentation Process. Food Microbiology, 73, 351- 361.

Lengkey, H. A. W. & Balia, R. L. (2014). The Effect of Starter Dosage and Fermenta-tion Time on pH and Lactic acid pro-duction. Biotechnology in Animal Hus-bandry, 30(2), 339-347.

Listiawati, M., Kurniati, T. & Windayani, N. (2019). An Effective Alternative of Pre-dawn Meal Using Milk Kefir. Journal of Physics: Conference Series IOP Pub-lishing, 1402(5), 1-6.

Liu, Y. & Pischetsrieder, M. (2017). Identi-fication and Relative Quantification of Bioactive Peptides Sequentially Re-leased during Simulated Gastrointesti-nal Digestion of Commercial Kefir. J. Agric. Food Chem, 65(9), 1865–1873.

McGrath, B. A., Fox, P. F., Mcsweeney, P. L. H. & Kelly, A. L. (2016). Composition and Properties of Bovine Colostrum: a Review. Journal Science and Technolo-gy, 96, 133–158.

Nikolaou, A., Tsakiris, A., Kanellaki, M., Bezirtzoglou, E., Akrida-Demertzki, K. & Kourkoutas, Y. (2019) Wine Produc-tion Using Free and Immobilized Ke-fir Culture on Natural Supports. Food Chemistry, 272, 39-48.

Permanasari, A. E., Rambli, D. R. A. & Dominic, P. D. D. (2010). Forecasting Method Selection Using ANOVA and Duncan Multiple Range Tests on Time Series Dataset. In 2010 International Symposium on Information Technology Vol. 2. 941-945.

Pratiwi, R. & Purwestri, Y.A. ( 2017). Black Rice as a Functional Food in Indonesia. Functional Foods in Health and Disease, 7(3), 182-194.

Rolim, P. M. (2015). Development of Prebi-otic Food Products and Health Benefits. Food Sci. Technol (Campinas), 35(1), 3-10.

Rosa, D. D., Dias, M. M. S., Grześkowiak, Ł. M., Reis, S. A., Conceição, L. L. & Peluzio, M. do C. G. (2017). Milk Ke-fir: Nutritional, Microbiological, and Health Benefits. Nutrition Research Re-views, 30, 82–96.

Roshanzamir, H., Rezaei, J. & Fazaeli, H. (2020). Colostrum and Milk Perfor-mance, and Blood Immunity Indices and Minerals of Holstein Cows Recei-

ving organic Mn, Zn, and Cu sources. Animal Nutrition, 6(1), 61-68.

Roy P. & Kumar, V. (2018). Functional Food: Probiotic as Health Booster. Journal Food Nutrition and Population Health, 2(2), 1-3.

Santos, G., Thaís, J. & Hermelina, F. (2017). Nutritional and Microbiological Quality of Bovine Colostrum Samples in Brazil. Revista Brasileira de Zootecnia, 46(1), 72-79.

Singh, P. K. & Shah N. P. (2017). Yogurt in Health and Disease Prevention Chapter 5 - Other Fermented Dairy Products: Kefir and Koumiss. London: Academic Press.

Sulmiyati, Said, N., Fahrodi, D. U., Malaka, R. & Maruddin, F. (2019). Assessment of the Antibacterial Activity of Goat Milk Kefir on Escherichia coli ATCC 8739 and Salmonella enteric sub sp. enterica serovar typhimurium ATCC 14028 using a well diffusion method. IOP Conf. Series: Earth and Environ-mental Science, 247, 012051.

Temiz, H. & Dağyıldız, K. (2017). Effects of Microbial Transglutaminase on Phys-icochemical, Microbial, and Sensorial Properties of Kefir Produced by Using Mixture Cows and Soymilk. Korean Journal for Food Science of Animal Re-sources, 37(4): 606–616.

Vianaa, R. O., Magalhães-Guedesa, K. T., Braga, R. A., Dias, D. R. & Schwan, R. F. (2017). Fermentation Process for Production of Apple-based Kefir Vin-egar: Microbiological, Chemical, and Sensory Analysis. Brazilian Journal Microbiology, 48(3), 592-601.

Zhi, Z. (2003). Study on Methods for Deter-mination of Lactic Acid in Fermented Broth. Food Science.




DOI: https://doi.org/10.15575/biodjati.v5i2.9668

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Biodjati



Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats