Perubahan morfologis dan anatomis kelapa sawit pada rezim air dan salinitas berbeda
DOI:
https://doi.org/10.15575/1963Keywords:
Abiotik, Cekaman, Genangan, Kelapa Sawit, SalinAbstract
Salinitas tinggi dan genangan dapat terjadi pada tempat dan waktu yang sama; meskipun demikian pemahaman terhadap pengaruh kedua kondisi tersebut terhadap pertumbuhan, respon morfologis, dan anatomis kelapa sawit masih sedikit. Telah dilakukan penelitian dengan mengkombinasikan 2 aras salinitas (non salin dan salin) dan tiga taraf genangan (tanpa genangan, interval genangan 2 minggu, dan interval genangan 4 minggu). Penelitian dilakukan dalam pot selama 4 bulan dengan bahan tanam kelapa sawit berumur 4 bulan. Parameter pertumbuhan dianalisis dengan analisis varian dan dilanjutkan dengan uji jarak berganda Duncan pada jenjang nyata 5%. Pengamatan visual secara langsung dan pembuatan preparat melintang akar dilakukan untuk mengetahui perubahan morfologi dan anatomi tanaman. Hasil analisis menunjukkan salinitas tinggi dan genangan konsisten menurunkan parameter pertumbuhan kelapa sawit. Salinitas tinggi dan genangan tidak secara konsisten mengubah rasio luas masing-masing jaringan penyusun akar primer, sekunder, dan tersier. Kelapa sawit membentuk pneumatophore dan saluran aerenkima pada kondisi genangan, baik non salin maupun salin. Mekanisme adaptasi terhadap genangan tersebut dapat menurunkan pengaruh negatif cekaman salinitas tinggi.
Â
High salinity and waterlogging can occur at the same place and time; however, the effects of these two conditions on growth, morphological, and anatomical responses of oil palm was not fully understood. A research had been done by combining two levels of salinity (non saline and saline) and three levels of waterlogging (without waterlogging, two-week waterlogging intervals, and four-week waterlogging intervals). The study was conducted in pots for 4 months used 4 months old oil palm planting material. The growth parameters were analyzed by analysis variance continued by Duncan multiple-range test at 5% level of convidence. The morphological and anatomical changes of plants were observed trought direct observation and root cross section. The results showed that high salinity and waterlogging consistently decreased the oil palm growth parameter. High salinity and waterlogging did not consistently change the ratio of the area of each primary, secondary, and tertiary root tissue. Palm oil formed pneumatophores and aerenchyma under both non saline and saline waterlogging. Adaptation mechanisms to these waterlogging could reduce the negative effects of high salinity stress.
References
Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A. Diaz-Vivancos, P., Sanchez-Blanco, M. J. & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7, 18-56. https://doi.org/10.3390/agronomy7010018
Ashraf, M. A. (2012). Waterlogging stress in plants: A review. African Journal of Agricultural Research, 7(13), 1976-1981. DOI: 10.5897/AJARX11.084
Batool, N., Shahzad, A & Ilyas, A. (2014). Plants and salt stress. International Journal of Agriculture and Crop Sciences, 7(14), 1439-1446. Retrieved from www.ijagcs.com. IJACS/2014/7-14/1439-1446
Chen, T., X. Cai, X. Wu, I. Karahara, L. Schreiber, & J. Lin. (2011). Casparian strip development and its potential function in salt tolerance. Plant Signaling and Behavior, 6(10), 1499–1502. https://doi.org/10.4161/psb.6.10.17054
Corley, R. H. V. dan P. B. Tinker. (2015). The Oil Palm. West Sussex: Blackwell Science.
Duarte, H. H. F. & E. R. de Souza. (2016). Soil water potentials and Capsicum annuum L. under salinity. Revista Brasileira de Ciência do Solo, 40, 1–11. DOI: 10.1590/18069657rbcs20150220
El-Nashar, W. Y. (2013). The combined effect of water-logging and salinity on crops yield. IOSR Journal of Agriculture and Veterinary Science, 6(4), 40-49. DOI: 10.9790/2380-0644049
Fakhrfeshani, M., Shahriari-Ahmadi, F., Niazi, A., Moshtaghi, N., Zare-Mehrjerdi, M. (2015). The effect of salinity stress on Na+ , K+ concentration , Na+ / K+ ratio , electrolyte leakage and HKT expression profile in roots of Aeluropus littoralis. Journal of Plant Molecular Breeding, 3(2), 1–10. http://dx.doi.org/10.22058/jpmb.2015.15369
Firmansyah, E., Kurniasih, B., & Indradewa, D. (2016). Shoot growth and yield of rice (Oryza sativa var . Indica) in the combined submergence and salinity. International Journal of Science and Research, 5(11), 1880–1884. DOI: 10.21275/ART20163171
Firmansyah, E., Kurniasih, B. dan Indradewa, D. (2017). Respon Varietas Padi Tahan Salin Terhadap Beberapa Durasi Genangan dengan Tingkat Salinitas Berbeda. Agroista, 1(1), 65–74. Retrieved from 36.82.106.238:8885/jurnal/index.php/AGI/article/download/27/26
Foster, K. J. & Miklavcic, S. J. (2017). A comprehensive biophysical model of ion and water transport in plant roots; Clarifying the roles of endodermal barriers in the salt stress response. Frontiers in Plant Science, 8, 1–18. https://doi.org/10.3389/fpls.2017.01326
Golldack, D. C. Li, Mohan, H., & Probst, N. (2014). Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 5(15), 1-10. https://dx.doi.org/10.3389%2Ffpls.2014.00151
Lauchli, A & Grattan, S. R. (2007). Plant growth and development under salinity stress. in Jenks, M.A., Hasegawa, P.M., & Jain, S. M. (Eds.) Advances in molecular breeding toward drought. Switzerland: Springer. pp 1–32.
Gupta, B. & Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 1-18. http://dx.doi.org/10.1155/2014/701596
Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New Insights on plant salt tolerance mechanisms and their their potential use for breeding. Frontiers in Plant Science, 7, 1787. https://dx.doi.org/10.3389%2Ffpls.2016.01787
Henson, I. E., Harun, M. H., & Chang, K. C. (2008). Some Observations on the effects of high water tables and flooding on oil palm and a preliminary model of oil palm water balance and use in the presence of a high water table. Oil Palm Bulletin, 56, 14–22. Retrieved from palmoilis.mpob.gov.my/publications/OPB/opb56-henson.pdf
Jackson, M. B. & Colmer, T. D. (2005). Response and adaptation by plants to flooding stress. Annals of Botany, 96(4), 501–505. https://dx.doi.org/10.1093%2Faob%2Fmci205
Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R. & Panneerselvam, R. (2009). Drought stress in plants : A review on morphological characteristics and pigments composition. International Journal of Agriculture & Biology, 11(1), 100–105. Retrieved from http://www.fspublishers.org/published_papers/84178_..pdf
Jamil, M., Ashraf, M., Rehman, S., Ahmad, M. & Rha, E. S. (2012). Salinity induced changes in cell membrane stability, protein and RNA contents. African Journal of Biotechnology, 11(24), 6476–6483. http://dx.doi.org/10.5897/AJB11.2590
Jenks, M. A. & Hasegawa, P. M. (2014). Plant abiotic stress. Chichester: John Wiley & Sons. DOI:10.1002/9781118764374
Jouyban, Z. (2012). The Effects of salt stress on plant growth. Technical Journal of Engineering and Applied Sciences, 2(1), 7–10. Retrieved from www.tjeas.com
Kim, H., H. Jeong, J. Jeon, dan S. Bae. (2016). Effects of irrigation with saline water on crop growth and yield in greenhouse cultivation. Water, 8(4), 127. https://doi.org/10.3390/w8040127
Koon, L. W. & Kun, O. B. (2006). The Unseen Flood : Waterlogging in Large Oil Palm Plantations. Jurutera, Januari 2006, 28–31. Retrieved from dspace.unimap.edu.my/.../1/028_030_031_unseen%20flood
Li, H., J. Yi, J. Zhang, Y. Zhao, B. Si, dan R. L. Hill, L. Cui, & X. Liu. (2015). Modeling of soil water and salt dynamics and its effects on root water uptake in heihe arid wetland, Gansu, China. Water, 7(5), 2382–2401. https://doi.org/10.3390/w7052382
Machado, R. M. A. & Serralheiro, R. P. (2017). Soil salinity : Effect on vegetable crop growth, management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030
Magdy, M & Mansour, F. (2016). Protective effect of 24-epibrassinolide against salt-induced destabilization of plasma membrane. International Journal of Advanced Research, 4(5), 488-492. http://dx.doi.org/10.21474/IJAR01/394
Morales, S. G., Trejo-Téllez, L. I., Merino, F. C. G, Caldana, C.,
Espinosa-Victoria, D. & Cabrera, B. E. H. (2012). Growth, photosynthetic activity, and potassium and sodium concentration in rice plants under salt stress. Acta Scientiarum, 34(3), 317–324. doi: 10.4025/actasciagron.v34i3.13687
Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2), 239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
Negrao, S., Schmockel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1–11. https://dx.doi.org/10.1093%2Faob%2Fmcw191
Nishiuchi, S., Yamauchi, T., Takahashi, H., Kotula, L., & Nakazono, M. (2012). Mechanisms for coping with submergence and waterlogging in rice. Rice, 5(1), 2. https://doi.org/10.1186/1939-8433-5-2
Parent, C., Capelli, N., Berger, A., Crèvecoeur, M., & Dat, J. F. (2008). An overview of plant responses to soil waterlogging. Plant Stress, 2(1), 20–27.
Ponnamperuma, F. N. (1972). The chemistry of submerged soils. Advances in Agronomy, 24, 29-96. Retrieved from www.garfield.library.upenn.edu/.../A1983QQ90500001.pdf
Rivera-Mendes, Y. D., Cuenca, J. C. & H. M. Romero. (2016). Physiological responses of oil palm (Elaeis guineensis Jacq.) seedlings under different water soil conditions. AgronomÃa Colombiana, 34(2), 163–171. Retrieved from http://www.redalyc.org/articulo.oa?id=180348900005
Salazar, C., Hernández, C. & Pino, M.T. (2015). Plant water stress: Associations between ethylene and abscisic acid response. Chilean Journal of Agricultural Research, 75(1), 71-79. http://dx.doi.org/10.4067/S0718-58392015000300008h
Shannon, M. C. (1997). Adaptation of plants to salinity. Advances in Agronomy, 60, 75–210. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=US9742172
Shaw, R. E. (2015). Plant waterlogging: causes, responses, adaptations and crop models. Thesis. School of Earth and Environmental Sciences University of Adelaide.
Tang, X., Mu, X., Shao, H., Wang, H.& Brestic, M. (2015). Global plant-responding mechanisms to salt stress:Physiological and molecular levels and implications in biotechnology. Crit. Rev. Biotechnol. 35, 425–437. https://doi.org/10.3109/07388551.2014.889080
Visser, E. J. W. & Pierik, R. (2007). Inhibition of root elongation by ethylene in wetland and non-wetland plant species and the impact of longitudinal ventilation. Plant, Cell and Environment, 30(1), 31–38. https://doi.org/10.1111/j.1365-3040.2006.01601.x
Voesenek, C. J. & Bailey-Serres, J. (2015). Flood adaptive traits and processes : an overview. New Phytologist, 206(1), 57–73. https://doi.org/10.1111/nph.13209
Wegner, L. H. (2010). Oxygen transport in waterlogged plants dalam Mancuso, S. dan Shabala, S. (ed.) Waterlogging Signalling and Tolerance in Plants. Berlin: Springer-Verlag Berlin, 1–294.
Downloads
Published
Issue
Section
Citation Check
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal exlusive right and licence of first publication for the full legal term of copyright with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- Authors also grant any third party the right to use the articles freely as long as its integrity is maintained and its original authors, citation details and publisher are identified.
- Jurnal Agro is not responsible for subsequent uses of the work. It is the author’s responsibility to bring an infringement action if so desired by the author
- The corresponding author must sign the License to Publish Agreement Form at the time of submission of his/her manuscript.
Jurnal Agro (J. Agro: ISSN 2407-7993) by http://journal.uinsgd.ac.id/index.php/ja/index is licensed under a Creative Commons Attribution 4.0 International License.