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Abstract 

Various studies have explored the fascinating characteristics of modules over discrete valuation 

domain. One notable finding is that the multiplication module is regarded as indecomposable within 

a discrete valuation domain. Based on this distinctive property, a categorization of weak and pure 

multiplication modules over discrete valuation domain is established. A notable property of a discrete 

valuation ring is its role as the localization of a Dedekind domain. With this connection, there has been 

a classification of weak multiplication modules over the Dedekind domain. In this article, we examine 

the characteristics of the discrete valuation domain and the properties of pure multiplication modules 

over the discrete valuation domain, which collectively contribute to the properties of pure 

multiplication modules over the Dedekind domain.  
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Introduction 

The ideal numbers in Ernst Kummer's study became the concepts of ideal and prime ideal in 
ring theory [1].  A Dedekind domain is characterized as an integral domain where any non-zero proper 
ideal is uniquely the result of prime ideals multiplication. Furthermore, this statement is equivalent to 
stating that every ideal can be inverted. In the 20th century, researchers realized that a Noetherian 
ring R qualifies as a Dedekind domain if and only if, for every maximal ideal P of R, the localization RP 
is a discrete valuation domain. In other words, a Dedekind domain is a generalization of a discrete 
valuation domain.  

The discrete valuation domain is commonly defined by two equivalent methods, the first one 
being through the concept of discrete valuation, or its association with local ring [2]. This paper will 
utilize the properties of the discrete valuation domain related to the local domain, which subsequently 
highlights the significant role of the maximal ideal. The localization of a Dedekind domain is a discrete 
valuation domain. It has been studied that multiplication module over a Dedekind domain is 

indecomposable [3]. More specific, the categorization of weak and pure multiplication modules over 
discrete valuation domain has been accomplished. Subsequently, it has been observed that weak 
multiplication modules over a ring R share many similar properties as weak multiplication modules 
over the R localization [4]. In this paper, we search for similarity properties between pure 
multiplication modules over a ring R and pure multiplication modules over the R localization that may 
lead us to classify pure multiplication modules over the Dedekind domain related to pure 
multiplication modules over the discrete valuation domain classification. In this paper, the result will 
be provided in propositions. We begin this paper with an introduction to the discrete valuation 
domain. 
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Definition 1. An integral domain 𝑹 is a discrete valuation domain if, 

1. Integral domain 𝑅 is a local ring. 
2. Jacobson radical of 𝑅 is 𝐽(𝑅) = 𝑝𝑅 = 𝑅𝑝, with 𝑝 is a non-nilpotent element of 𝑅. 
3. ∩𝑛≥1 (𝐽(𝑅))

𝑛
= 0 for every 𝑛 

[5] 

A simple example of a discrete valuation domain is the localization of the ring ℤ over the set 
{ℤ\𝑃} where 𝑃 is the prime ideal of 𝑅. Notated with ℤ(P) = {

𝑎

𝑏
|𝑎, 𝑏 ∈ ℤ, 𝑏 ∉ 𝑃}. 

In this research, the chosen definition of the Dedekind domain is related to the invertibility of 
its ideals. The invertibility of an ideal is connected to fractional ideals. An ideal 𝐼 in the integral domain 
𝑅 is invertible if there exists a fractional ideal 𝐼−1 in the field of a fraction of 𝑅 so that 𝐼𝐼−1 = 𝑅. In 
this paper, we see there is a correlation between two invertible ideals in an integral domain 𝑅. 

 

Proposition 1. Let 𝐴 and 𝐵 are invertible ideals in the integral domain 𝑅. The inverse of 𝐴 is 𝐴−1 =
{𝑥 ∈ 𝑄(𝑅)|𝑥𝐴 ⊆ 𝑅} and the inverse of 𝐵 is 𝐵−1 = {𝑥 ∈ 𝑄(𝑅)|𝑥𝐵 ⊆ 𝑅}. If 𝐴 ⊆ 𝐵 then 𝐵−1 ⊆ 𝐴−1. 

Proof. We take an arbitrary element 𝑥 ∈ 𝐵−1, then 𝑥𝐵 ⊆ 𝑅. We have 𝐴 ⊆ 𝐵 so that 𝑥𝐴 ⊆ 𝑥𝐵 ⊆ 𝑅. It 
means 𝑥 ∈ 𝐴−1. Because for an arbitrary 𝑥 ∈ 𝐵−1 then 𝑥 ∈ 𝐴−1 it is proved that 𝐵−1 ⊆ 𝐴−1. 

Introduction about the ideal and its inverse has an important role in the Dedekind domain 
for we use a definition of the Dedekind domain related to the invertible ideal. 

Definition 2. Let an 𝑅 as an integral domain. If every non-zero ideal 𝐼 in 𝑅 is invertible then 𝑅 is a 
Dedekind domain. [6] 

The integral domain ℤ is a Dedekind domain because, for every non zero ideal 𝐼 = 𝑛ℤ, there 
always exists the fractional ideal 𝐼−1 =

1

𝑛
ℤ so that 𝐼𝐼−1 = ℤ. 

As mentioned, the localization of the Dedekind domain is a discrete valuation domain. We are 
going to see why this is true. Let 𝑅 be a Dedekind domain and 𝑃 is an arbitrary maximal ideal of 𝑅. 
Localization of 𝑅 over 𝑃 notated as 𝑅𝑃 = {

𝑎

𝑠
|𝑎, 𝑠 ∈ 𝑅, 𝑠 ∉ 𝑃}. Since the ideal 𝑃 is also a prime ideal 

then  
𝑎

𝑠
∈ 𝑅𝑃 is a unit if and only if 𝑎 ∈ 𝑅\𝑃. Because every element outside of 𝑃 is unit then 𝑃𝑅𝑃 is a 

unique maximal ideal of 𝑅𝑃. Having a unique maximal ideal is equivalent to being a local ring, so 𝑅𝑃 is 
a local ring. Then the Jacobson radical is the maximal ideal 𝑃𝑅𝑃. Then 𝑅𝑃 satisfied the definition of the 
discrete valuation domain. 

 

Methods 

The method applied by the author in this research is a literature review, where the main reference 
for this paper is the results of [7] study titled "Indecomposable weak multiplication modules over 
Dedekind domain." From the main literature, the pure multiplication module over the discrete 
valuation domain is classified. This paper will examine the properties of pure multiplication modules 
over Dedekind domain. Given the fact that the localization of Dedekind domain results in a discrete 
valuation domain, the properties of pure multiplication modules over a discrete valuation domain will 
first be explored. Subsequently, the properties of pure multiplication modules over Dedekind domain 
will be investigated. In this paper, all results and properties discovered are provided in the proposition. 
Here are some introductions to the multiplication module over discrete valuation ring and its 
classification from the main reference. 

Definition 3. An 𝑀 module over a ring 𝑅 is a multiplication module if and only if for every submodule 
𝑁 from 𝑀 there always exists an ideal 𝐼 in 𝑅 so that 𝑁 = 𝐼𝑀. [7] 

Based on the given definition, a simple example of a multiplication module is ℤ as a ℤ -module. 
Any submodule of ℤ is an ideal in the form of 𝑛ℤ for some 𝑛 ∈  ℤ. Thus, there exists an ideal 𝐼 =  𝑛ℤ, 
which is the submodule itself so that 𝐼ℤ = 𝑛ℤ. 

 Next, the definition of a pure submodule is provided, along with some simple examples of 
pure submodules. 
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Definition 4. Let 𝑀 be a module over the ring 𝑅. A submodule 𝑁 of a module 𝑀 is called a pure 
submodule if, for every ideal 𝐼 of 𝑅, 𝐼𝑁 =  𝑁 ∩  𝐼𝑀. [7] 

Simple examples of pure submodules include 2ℤ as a submodule of ℤ as a ℤ-module. Every ideal 𝑛ℤ 
in 2ℤ equals 2𝑛ℤ, which is the same as 2ℤ ∩  𝑛ℤℤ =  2𝑛ℤ. Therefore, 2ℤ is a pure submodule of ℤ as 
a ℤ-module. Similarly, every submodule of ℤ as a ℤ -module is a pure submodule. 

A module is called a simple pure module if the only pure submodule is the trivial submodule. So, 
a module 𝑀 over the ring 𝑅 is a pure multiplication module if every pure submodule 𝑁 from 𝑀 satisfies 
the multiplication module property. 

The pure multiplication modules over the discrete valuation domain have already been classified 
by Ebrahimi Atani (2008). This classification is summarized in the following theorem. 
 
Theorem 1. If 𝑅 is a discrete valuation domain with 𝑃 = ⟨𝑝⟩ is a maximal ideal that is unique. Then the 
pure multiplication 𝑅-modules are: 

1. 𝑅. 
2. 𝑅/𝑃𝑛, 𝑛 ≥ 1. 
3. 𝐸(𝑅/𝑃), the injective hull of 𝑅/𝑃. 
4. 𝑄(𝑅), the field of fractions of 𝑅. 

[7] 

Proof. This theorem is proved by first proving that each of the modules mentioned is a pure 
multiplication module. It is clear that 𝑅 and 𝑅/𝑃𝑛 is a multiplication module, consequently they are 
pure multiplication module. And 𝑄(𝑅) is a pure multiplication module because the only proper 
submodule of it is {0} (Lu, 1995). Using the property of the annihilator of 𝑃𝑛  it is proved that 𝐸(𝑅/𝑃) 
is a pure multiplication module [9]. Then it is proved that for any pure multiplication module, it will be 
isomorphic to one of the modules mentioned. The condition that is considered for the arbitrary pure 
multiplication module over the discrete valuation domain is the height of the element and the 
annihilator of an arbitrary element in the module. The annihilator of an arbitrary element in the 
module is considered because it is related to the property that pure multiplication module over 
discrete valuation domain 𝑀 is torsion free 𝑅-module and 𝑃𝑛𝑀 = 𝑀 (𝑛 ≥ 1) [10]. Let 𝑎 ∈ 𝑀 with 
𝑎 ≠ 0. There are two possible heights of 𝑎, the height of 𝑎 is finite (ℎ(𝑎) = 𝑛) or the height of 𝑎 is 
infinite (ℎ(𝑎) = ∞). Another condition considered is the annihilator. The possibilities are if the only 
annihilator of 𝑎 notated by (0: 𝑎) = {𝑟 ∈ 𝑅|𝑟𝑎 = 0} is 0 or if the annihilator of 𝑎 is the ideal 𝑃. 

With the consideration of the four cases, we got these results 

1. If ℎ(𝑎) = 𝑛, (0: 𝑎) = 𝑃 then 𝑀 ≅ 𝑅/𝑃𝑛+1. 
2. If ℎ(𝑎) = ∞, (0: 𝑎) = 0 then 𝑀 ≅ 𝑅. 
3. If ℎ(𝑎) = 𝑛, (0: 𝑎) = 𝑃 then 𝑀 ≅ 𝑄(𝑅). 
4. If ℎ(𝑎) = ∞, (0: 𝑎) = 0 then 𝑀 ≅ 𝐸(𝑅/𝑃). 

Detailed proof is provided in [6]. 

With the correlation between the Dedekind domain and the discrete valuation domain, it is 
interesting to see if the same form of modules is also a pure multiplication module if we change the 
integral domain to a Dedekind domain.  

 

Results and Discussion 

Instinctively, when examining the properties of a module over a ring R, our initial step is to 
investigate the ring's ideal viewed as an R-module. Building on this intuition, we are currently 
conducting experiments on an ideal of R within the context of a Dedekind domain. Our objective is to 
determine whether the ideal of R, when considered as an R-module, qualifies as a pure multiplication 
module. 

Proposition 2. Every non zero ideal of a Dedekind domain 𝑅 is a pure multiplication module over 𝑅. 

Proof. Consider a pure submodule 𝑁 of 𝐼. Since 𝑁 is a pure submodule, for every ideal 𝐽 in 𝑅, it holds 
that 𝐽𝑁 =  𝑁 ∩  𝐽𝐼. We are going to find ideal 𝐿 in 𝑅 such that 𝐿𝐼 =  𝑁. Since 𝑅 is a Dedekind domain, 
every ideal can be inverted. In other words, a fractional ideal 𝐼−1 will always exist such that 𝐼𝐼−1 =  𝑅. 
Construct the set 𝐿 =  𝑁𝐼−1. First, it needs to be ensured that this set is ideal. Since 𝑁 is a submodule 
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of 𝐼, 𝑁 is also an ideal in 𝑅, and thus, 𝑁 can be inverted. In other words, there exists 𝑁−1 such that 
𝑁−1𝑁 =  𝑅. According to proposition 1 because 𝑁 ⊆  𝐼, then 𝐼−1  ⊆  𝑁−1. Therefore, 𝑁𝐼−1  ⊆
 𝑁𝑁−1  ⊆  𝑅. It is clear that 𝐿 =  𝑁𝐼−1 is an ideal. Thus, 𝐿𝐼 =  𝑁𝐼−1𝐼 =  𝑁𝑅 =  𝑁. This proves that 
there exists an ideal 𝐿 for any pure submodule 𝑁 such that 𝑁 =  𝐿𝐼. Therefore, 𝐼 as an 𝑅-module is a 
pure multiplication module. 

Next, observe that 𝐼, as an 𝑅-module, is isomorphic to one of the forms from the classification 
theorem earlier, namely 𝑅 as an 𝑅-module. Since 𝑅 is a Dedekind domain, 1 ∈ 𝑅 can be written as 
1 = 𝑏𝑎 with 𝑏 ∈ 𝐼−1 and 𝑎 ∈ 𝐼. We construct isomorphism 𝛷: 𝐼 →  𝑅 defined as follows, 𝛷(𝑥)  =
 𝑏𝑥, where 0 ≠  𝑏 ∈  𝐼−1. It will be proven that the mapping 𝛷 is an isomorphism. First, check 
whether 𝛷 is a homomorphism. Take any two elements 𝑥1, 𝑥2  ∈  𝐼 and any arbitrary element 𝑟 ∈  𝑅. 

 

𝛷(𝑥₁ +  𝑥₂)  =  𝑏(𝑥₁ +  𝑥₂)  =  𝑏𝑥₁ +  𝑏𝑥₂ =  𝛷(𝑥₁)  +  𝛷(𝑥₂) 

𝑟𝛷(𝑥₁)  =  𝑟𝑏𝑥₁ =  𝑏𝑟𝑥₁ =  𝛷(𝑟𝑥₁) 

 

Therefore, 𝛷 is a homomorphism. Next, prove that 𝛷 is an injective mapping. Take two elements 
𝑏𝑥1 , 𝑏𝑥2  ∈  𝑅 with 𝑏𝑥1 =  𝑏𝑥2. Because of this, 𝑏𝑥1  −  𝑏𝑥2  =  𝑏(𝑥1  −  𝑥2)  =  0, and since 𝑏 ≠  0, 
it follows that 𝑥1 −  𝑥2  =  0, so 𝑥1  =  𝑥2. This proves that 𝛷 is an injective mapping. Finally, it will be 
proven that 𝛷 is a surjective mapping. Take any arbitrary element 𝑟 ∈  𝑅, and observe that 𝑟 =  1𝑟. 
Because 𝐼 is invertible then 𝑏 ∈  𝐼−1, there exists 𝑎 ∈  𝐼 such that 𝑏𝑎 =  1. Thus, 𝑟 =  1𝑟 =  𝑏𝑎𝑟 =
 𝛷(𝑎𝑟). Therefore, 𝛷 is a surjective mapping. It is thereby proven that 𝛷 is an isomorphism. 

With this result, it is suggested that the classification of pure multiplication modules over the 
Dedekind domain bears a resemblance to the classification of pure multiplication modules over 
discrete valuation rings. To substantiate this suggestion, it will first be proven that any form of the 
classification of pure multiplication modules over discrete valuation rings is also a pure multiplication 
module when the module is over a Dedekind domain. 

Proposition 3. Let 𝑅 be a Dedekind domain, and let 𝑃 be any maximal ideal of 𝑅. Then the following 
four forms are pure multiplication modules: 

1. 𝑅 
2. (𝑅/𝑃𝑛), (𝑛 ≥  1) 
3. 𝐸(𝑅/𝑃), the injective hull of (𝑅/𝑃) 
4. 𝑄(𝑅), the field of fractions of 𝑅 

Proof.  

1. Let 𝑅 be a Dedekind domain. 𝑅, as an 𝑅-module is a pure multiplication module because 
every submodule of 𝑅 is an ideal. Therefore, for any submodule 𝑆 of 𝑅, it implies 𝑆 =  𝑆𝑅. 
Since 𝑅 is a multiplication module over itself, it is a pure multiplication module. 

 

2. Module (𝑅/𝑃𝑛) over 𝑅 is a pure multiplication module. This can be verified by taking any 
pure submodule 𝑆 of 𝑅/𝑃𝑛. Let 𝑆 = {0}, then there exists 𝐼 =  𝑃𝑛  such that (𝑃𝑛𝑅/𝑃𝑛  =
 {0}. If 𝑆 ≠  {0}, we can construct the ideal 𝐼 =  {𝑟 ∈  𝑅 ∣  𝑟 + 𝑃𝑛 ∈  𝑆}, so that 𝑆 =
 𝐼𝑅/𝑃𝑛. The construction of 𝐼 ensures that 𝑃𝑛 𝑅/𝑃𝑛  =  {0}. Since there always exists s an 
ideal 𝐼 for any pure submodule 𝑆 such that 𝐼𝑅/𝑃𝑛  =  𝑆 So, 𝑅/𝑃𝑛 is proven to be a pure 
multiplication module. 

 

3. Given R as a Dedekind domain, there is no certainty that the only potential pure submodule 
of 𝐸(𝑅/𝑃) is {0}. Thus, two cases will be examined by considering any pure submodule 𝑆 of 
𝐸(𝑅/𝑃). Let 𝑆 =  {0} then 𝑆 satisfies the multiplication property. If 𝑆 ≠  {0} an ideal 𝐼 =
 {𝑟 ∈  𝑅 ∣  𝑟𝐸(𝑅/𝑃) ⊆  𝑆} can be constructed. It is evident that 𝐼𝐸(𝑅/𝑃) ⊆  S. To check if 
𝑆 ⊆  𝐼𝐸(𝑅/𝑃), in a Dedekind domain, every injective module is divisible. This means that for 
any element 𝑠 ∈  𝑆, there exists 𝑦 ∈  𝐸(𝑅/𝑃) such that 𝑠 =  𝑟𝑦 for some 𝑟 ∈  𝑅. Since 𝑟𝑦 ∈
 𝑆, it implies 𝑟 ∈  𝐼. or 𝑟𝑦 =  𝑠 ∈  𝐼𝐸(𝑅/𝑃). Thus, 𝑆 =  𝐼𝐸(𝑅/𝑃). Therefore, for any pure 
multiplication module 𝑆, there exists an ideal 𝐼 such that 𝑆 =  𝐼𝐸(𝑅/𝑃), establishing that 
𝐸(𝑅/𝑃) is a pure multiplication module. 
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4. The module 𝑄(𝑅) over 𝑅 is a pure multiplication module because there is no other pure 
submodule besides {0}. Assume there is another non-zero pure submodule 𝑆 ≠  {0}. Then 
(𝑆 ∶ 𝑄(𝑅))  =  {𝑟 ∈  𝑅 ∣  𝑟𝑄(𝑅) ⊆  𝑆}  =  {0} because 𝑟𝑄(𝑅)  =  𝑄(𝑅) for every non-zero 
element 𝑟 ∈  𝑅. Therefore, the ideal that satisfies 𝐼𝑆 =  𝑆 ∩  𝐼𝑄(𝑅) can only be {0}, 
contradicting the definition of a pure submodule. Hence, the only pure submodule of 𝑄(𝑅) is 
{0}. 

 
For indecomposable weak multiplication modules over the Dedekind domain, it is proved that the 

weak multiplication modules over the Dedekind domain localization is also indecomposable [4]. In 
pure multiplication modules over discrete valuation rings, every non-zero module is indecomposable 
[7]. It turns out that this property is also satisfied in pure multiplication modules over the Dedekind 
domain. 
 

 
Proposition 4. Every pure multiplication module over a Dedekind domain R that is non zero is also an 
indecomposable module. 

Proof. Suppose 𝑀 is a pure multiplication 𝑅-module with 𝑀 =  𝑁 ⊕  𝑃 where 𝑁 ≠  0 and 𝑃 ≠  0. 
Since the direct sum of 𝑀 is a pure submodule, there exists an ideal 𝐼 such that 𝐼𝑀 =  𝑁.  

Because 𝑅 is a Dedekind domain, there exists a fractional ideal 𝐼−1 such that 𝐼𝐼−1  =  𝑅. 

Multiplying the equation 𝑀 =  𝑁 ⊕  𝑃 by 𝐼−1 yields: 
 

𝐼−1𝑀 =  𝐼−1𝑁 ⊕  𝐼−1𝑃 
𝐼−1𝑀 =  𝐼−1𝐼𝑀 ⊕  𝐼−1𝑃 

𝐼−1𝑀 =  𝑀 ⊕ 𝐼−1𝑃 
With 𝑀 isomorphic to 𝐼−1𝑀, it can be concluded that 𝐼−1𝑃 = 0. Since 𝐼−1 is invertible it follows 

that 𝑃 = 0. This is contradictory to 𝑃 ≠  0, so it must be that 𝑀 is indecomposable. 
 

Conclusion 

Based on the results and discussion above, two properties of pure multiplication module over 
the Dedekind Domain are confirmed. We confirmed that the pure multiplication module over the 
Dedekind domain is indecomposable and the classification form of the pure multiplication module 
over the discrete valuation domain is also a pure multiplication over the Dedekind domain.  

These findings make it interesting to examine whether the classification of pure multiplication 
over the Dedekind domain shares similarities with its classification over discrete valuation domain. 
Furthermore, by applying various approaches and exploring alternative definitions of the Dedekind 
domain, one can uncover distinct properties of pure multiplication modules over the Dedekind 
domain. 
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