Sintesis dan Karakterisasi Nanostruktur Tembaga Oksida dengan Metode Hidrotermal


Citra Deliana Dewi Sundari(1*), Reni Fitriani Rahayu(2), Neneng Windayani(3)

(1) Program Studi Pendidikan Kimia, Fakultas Tarbiyah dan Keguruan, UIN Sunan Gunung Djati Bandung, Indonesia
(2) Program Studi Pendidikan Kimia, Fakultas Tarbiyah dan Keguruan, UIN Sunan Gunung Djati Bandung, Indonesia
(3) Program Studi Pendidikan Kimia, Fakultas Tarbiyah dan Keguruan, UIN Sunan Gunung Djati Bandung, Indonesia
(*) Corresponding Author

Abstract


Karakteristik material tembaga oksida (CuO) bergantung pada struktur dan morfologinya. Prosedur sintesis tembaga oksida memberikan pengaruh yang signifikan terhadap struktur dan morfologi material yang dihasilkan. Pada penelitian ini, nanostruktur tembaga oksida disintesis melalui proses hidrotermal dengan prosedur yang relatif sederhana. Karakterisasi terhadap sampel CuO yang dihasilkan menunjukkan morfologi partikel yang tidak beraturan dan berongga dengan ukuran partikel berkisar antara 300-800 nm dan ukuran rongga berkisar antara 100-300 nm. Struktur CuO dikonfirmasi dengan adanya puncak difraksi karakteristik CuO pada sudut difraksi (2θ) 35,29o dan 38,50o. Nanostruktur CuO yang dihasilkan memperlihatkan serapan maksimum pada panjang gelombang 416-422 nm.

Keywords


Tembaga oksida, Nanostruktur CuO, Metode hidrotermal

Full Text:

PDF

References


D. P. Singh, N. Ali, "Synthesis of TiO2 and CuO nanotubes and nanowires", Science of Advanced Materials, vol. 2, pp. 295–335, 2010.

A. H. Jayatissa, K. Guo, A. C. Jayasuriya, "Fabrication of cuprous and cupric oxide thin films by heat treatment", Applied Surface Science, vol. 255, pp. 9474–9, 2009.

A. Ogwu, T. Darma, E. Bouquerel, "Electrical resistivity of copper oxide thin films prepared by reactive magnetron sputtering", Journal of Achievements of Materials and Manufacturing Engineering, vol. 24, pp. 172–7, 2007.

M. Vaseem, A. Umar, S. H. Kim, Y-B. Hahn, "Low-temperature synthesis of flower-shaped CuO nanostructures by solution process: formation mechanism and structural properties", The Journal of Physical Chemistry C, vol. 112, pp. 5729–35, 2008.

D. Chauhan, V. Satsangi, S. Dass, R. Shrivastav, "Preparation and characterization of nanostructured CuO thin films for photoelectrochemical splitting of water", Bulletin of Materials Science, vol. 29, pp. 709–16, 2006.

S. Anandan, S. Yang, "Emergent methods to synthesize and characterize semiconductor CuO nanoparticles with various morphologies—an overview", Journal of Experimental Nanoscience, vol. 7, no. 2, pp. 23–56, 2007.

Y. Li, X. Y. Yang, Y. Feng, Z. Y. Yuan, B. L. Su, "One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: synthesis, characterizations, properties and applications", Critical Reviews in Solid State and Materials Sciences, vol. 37, pp. 1–74, 2012.

G. Filipic, U. Cvelbar, "Copper oxide nanowires: a review of growth", Nanotechnology, vol. 23, pp. 194001, 2012.

Y. Liu, Y. Chu, Y. Zhuo, M. Li, L. Li, L. Dong, "Anion-controlled construction of CuO honeycombs and flowerlike assemblies on copper foils", Crystal Growth & Design, vol. 7, pp. 467–70, 2007.

M. Vaseem, A. Umar, S. H. Kim, Y-B. Hahn, "Low-temperature synthesis of flower-shaped CuO nanostructures by solution process: formation mechanism and structural properties", The Journal of Physical Chemistry C, vol. 112, pp. 5729–35, 2008.

X. Zheng, C. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, Y. Soejima, "Observation of charge stripes in cupric oxide", Physical Review Letters, vol. 85, pp. 5170–3, 2000.

aH. MacDonald, "Copper oxides get charged up", Nature, vol. 414, pp. 409–10, 2001.

P. Mallick, S. Sahu, "Structure, Microstructure and Optical Absorption Analysis of CuO Nanoparticles Synthesized by Sol-Gel Route", Nanoscience and Nanotechnology, vol. 2, no. 3, pp. 71-74, 2012.

X. P. Gao, J. L. Bao and G. L. Pan, “Preparation and Electro-chemical Performance of Polycrystalline and Single Crystal-line CuO Nanorods as Anode Materials for Li Ion Battery”, The Journal of Physical Chemistry B, vol. 108, pp. 5547, 2004.

R. Vijaya Kumar, R. Elgamiel, Y. Diamant, and A. Gedanken, “Sonochemical Preparation and Characterization of Nano-crystalline Copper Oxide Embedded in Poly(vinyl alcohol) and Its Effect on Crystal Growth of Copper Oxide”, Langmuir, vol. 17, pp. 1406, 2001.

W. Wang, Y. Zhan and G. Wang, “One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant”, Chemical Communications, pp. 727, 2001.

M. Bibi, Q. A. Javed, H. Abbas, S. Baqi, "Outcome of temperature variation on sol-gel prepared CuO nanostructure properties (optical and dielectric)", Materials Chemistry and Physics, vol. 192, pp. 67-71, 2017.

A. D. Li, W. C. Liu, "Optical properties of ferroelectric nanocrystal/polymer composites", Physical Properties and Applications of Polymer Nanocomposites, pp. 108-158, 2010.

Zhong-shan Hong, Yong Cao, Jing-fa Deng, "A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles", Materials Letters 52Ž2002.34–38.

S. Rehman, A. Mumtaz, S. K. Hasanain, "Size effects on the magnetic and optical properties of CuO nanoparticles," Journal of Nanoparticle Research, vol. 13, no. 6, pp. 2497–507, 2011.




DOI: https://doi.org/10.15575/ak.v5i1.3725

Copyright (c) 2018 Citra Deliana Dewi Sundari, Reni Fitriani Rahayu, Neneng Windayani

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CrossrefSINTAGoogle ScholarIndonesia One Search

View My Stats

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.